首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparative study of the reactivities of free 5-hydroxymethylcytosine (5-HMC) and 5-HMC found in the composition of native, denaturated and intraphage DNA of the T2 phage with that of O-methylhydroxylamine (OMHA) demonstrated that the DNA secondary structure in situ is partially disturbed. The interaction DNA-protein in the phage particle channels the reaction into a predominant formation of 4N-methoxy-6-methoxyamino-5,6-dihydro-5-hydroxymethyl cytosine, but not 4N-methoxy-5-hydroxymethyl cytosine, which is formed in vitro. In the course of the reaction the interaction DNA-protein is probably fixed by covalent binding.  相似文献   

2.
A study was made of several bacteriophages (including phages U2 and LB related to T-even phages of Escherichia coli) that grow both on E. coli K12 and on some Salmonella strains. Such phages were termed ambivalent. T-even ambivalent phages (U2 and LB) are rare and have a limited number of hosts among Salmonella strains. U2 and LB are similar to canonical E. coli-specific T-even phages in morphological type and size of the phage particle and in reaction with specific anti-T4 serum. Phages U2 and LB have identical sets of structural proteins, some of which are similar in size to structural proteins of phages T2 and T4. DNA restriction patterns of phages U2 and LB differ from each other and from those of T2 and T4. Still, DNAs of all four phages have considerable homology. Unexpectedly, phages U2 and LB grown on Salmonella bungori were unstable during centrifugation in a CsCl gradient. Ambivalent bacteriophages were found in species other than T-even phages and were similar in morphotype to lambdoid and other E. coli phages. One of the ambivalent phages was highly similar to well-known Felix01, which is specific for Salmonella. Ambivalent phages can be used to develop a new set for phage typing in Salmonella. An obvious advantage is that ambivalent phages can be reproduced in the E. coli K12 laboratory strain, which does not produce active temperate phages. Consequently, the resulting typing phage preparation is devoid of an admixture of temperate phages, which are common in Salmonella. The presence of temperate phages in phage-typing preparations may cause false-positive results in identifying specific Salmonella strains isolated from the environment or salmonellosis patients. Ambivalent phages are potentially useful for phage therapy and prevention of salmonellosis in humans and animals.  相似文献   

3.
H Takahashi  H Saito 《Plasmid》1982,8(1):29-35
Transduction of plasmid pBR322 by cytosine-substituted T4 phages has been studied. Three T4 phage mutants which substitute cytosine for all of hydroxymethylcytosine residues in the DNA, were shown to transduce pBR322 at frequencies of 2 × 10?2 to 4 × 10?3 transductants per singly infected cell. Also, three T4 phage strains which partially substitute cytosine for hydroxymethylcytosine, transduced pBR322 at frequencies of 2 × 10?3 to 2 × 10?4. The transduction frequencies of pBR322 we attained are at least 10-fold higher than those reported by G. G. Wilson, K. Young, and G. J. Edlin (1979, Nature (London)280, 80–82). We found that multiplicity of infection in preparation of the transducing phage is the most important factor affecting the frequency of pBR322 transduction. When a lysate made at a multiplicity of infection ranging from 0.5 to 0.05 was used as the donor phage, transduction frequency of pBR322 was 10- to 40-fold higher than that of high-m.o.i. lysate. The transduction frequency was not affected by either restriction systems or amber suppressors of the recipient cells. However, no pBR322-containing transductant was obtained when either recA or polA mutants were used as the recipients. DNA from T4dC phage containing pBR322-transducing particles was analyzed on agarose gel electrophoresis after cleavage with restriction endonucleases. It was suggested that the pBR322 DNA in the T4dC phage particles exists as head-to-tail concatemers.  相似文献   

4.
A study was made of several bacteriophages (including phages U2 and LB related to T-even phages of Escherichia coli) that grow both on E. coli K12 and on some Salmonella strains. Such phages were termed ambivalent. T-even ambivalent phages (U2 and LB) are rare and have a limited number of hosts among Salmonella strains. U2 and LB are similar to canonical E. coli-specific T-even phages in morphological type and size of the phage particle and in reaction with specific anti-T4 serum. Phages U2 and LB have identical sets of structural proteins, some of which are similar in size to structural proteins of phages T2 and T4. DNA restriction patterns of phages U2 and LB differ from each other and from those of T2 and T4. Still, DNAs of all four phages have considerable homology. Unexpectedly, phages U2 and LB grown on Salmonella bongori were unstable during centrifugation in a CsCl gradient. Ambivalent bacteriophages were found in species other than T-even phages and were similar in morphotype to lambdoid and other E. coli phages. One of the ambivalent phages was highly similar to well-known Felix01, which is specific for Salmonella. Ambivalent phages can be used to develop a new set for phage typing in Salmonella. An obvious advantage is that ambivalent phages can be reproduced in the E. coli K12 laboratory strain, which does not produce active temperature phages. Consequently, the resulting typing phage preparation is devoid of an admixture of temperate phages, which are common in Salmonella. The presence of temperate phages in phage-typing preparations may cause false-positive results in identifying specific Salmonella strains isolated from the environment or salmonellosis patients. Ambivalent phages are potentially useful for phage therapy and prevention of salmonellosis in humans and animals.  相似文献   

5.
The secondary structure of NaDNA from E. coli T4 and T6 phages has been studied by the X-ray diffraction method. Molecules of these DNAs as well as T2 phage DNA molecules contain hydroxymethylcytosine glucosylated at different position instead of cytosine. At high relative humidity these DNAs are shown to exist in B-conformaion. As humidity decreases the transformation into T=conformation takes place in the T4 phage DNA whereas in the T6 phage DNA changes of secondary structure similar to B-T transformation occur which do not result however in the appearance of all the characteristics of the T-conformation.  相似文献   

6.
Glucosylated deoxyribonucleic acid (DNA) from phages T4 and T6 competes poorly with homologous DNA causing only a slight decrease of transformation in Group H Streptococcus strain Challis. Other types of heterologous DNAs (Micrococcus luteus, Clostridium perfringens, Escherichia coli, calf thymus and non-glucosylated phage T6 DNA), in contrast to glucosylated T4 and T6 DNAs, compete with transforming DNA to the normal, high extent. These results indicate that as in transformation of Bacillus subtilis, the presence of glucose attached to 5-hydroxymethylcytosine in phage T6 DNA considerably decreases the interaction of such DNA with competent cells of the Challis strain. It also indicates that the guanine plus cytosine content of DNA is not decisive in determining its interaction with competent cells.  相似文献   

7.
The properties of three T-related phages-35, 55, and 3201-isolated from Shigella sonnei were studied. They were similar with respect to morphology of plaques, duration of the latent periods, lysis inhibition effect, and serological characteristics. These phages closely resembled the T-even phages. Phages 3201, 35, and 55 had the same host range and receptor specificity as phage T2.  相似文献   

8.
Citrobacter phages 38/37, 31/37, 40/1 and 8/5, isolated from lysogenic cultures, were concentrated and purified by 2 cycles of differential centrifugation. Electron microscopy of the phages has shown that their particles have similar morphology and that they relate to the morphological group A1. The heads of the phages are hexagonal, 50 +/- 2 nm in diameter. The tail of the phage is straight, 112-152 nm in length, with a contracting sheath 11.5-12.5 nm wide. The tails of the phages 38/37 and 40/1 were found to be slightly longer in comparison with the phages 31/37 and 8/5. Chromatographic investigation of DNA preparations of the phages revealed the presence of 4 nitrous bases. Identification of the latter permitted us to relate them to common nitrous bases. DNA of the phages is double-stranded and belongs to a weakly expressed guanine-cytosine type. The content of guanine and cytosine in DNA of the phage 38/37 amounts to 56.68%, that of the phage 31/37 to 56.75, of the phage 40/1 to 57.36% and of the phage 8/5 to 55.58%. No substantial variations were observed in the DNA composition of the phages.  相似文献   

9.
CP81 is a virulent Campylobacter group III phage whose linear genome comprises 132,454 bp. At the nucleotide level, CP81 differs from other phages. However, a number of its structural and replication/recombination proteins revealed a relationship to the group II Campylobacter phages CP220/CPt10 and to T4-type phages. Unlike the T4-related phages, the CP81 genome does not contain conserved replication and virion modules. Instead, the respective genes are scattered throughout the phage genome. Moreover, most genes for metabolic enzymes of CP220/CPt10 are lacking in CP81. On the other hand, the CP81 genome contains nine similar genes for homing endonucleases which may be involved in the attrition of the conserved gene order for the virion core genes of T4-type phages. The phage apparently possesses an unusual modification of C or G bases. Efficient cleavage of its DNA was only achieved with restriction enzymes recognizing pure A/T sites. Uncommonly, phenol extraction leads to a significant loss of CP81 DNA from the aqueous layer, a property not yet described for other phages belonging to the T4 superfamily.  相似文献   

10.
A total of 712 Shigella strains were studied with the use of dysentery diagnostic phages DD II, DD VI and DD VII in order to reveal the systems of host DNA specificity. The study comprised 4 tests: mass screening by the intensity of phagolytic reaction of phages in various strains; and the determination of the parameters of adsorption. As a result, an effective modification and restriction systems were revealed in Sh. sonnei 311 with the use of phage DD II. Bacteriophage DD VII was effectively restricted in E. coli CK, BB and BB/T4. Cross titration showed that the modification and restriction systems of E. coli BB and BB/T4 differed from the specificity system of E. coli CK. Phage DD VI had an exceptionally broad spectrum of activity and was not sensitive to any known restriction system.  相似文献   

11.
In an investigation of the antigenic fine structure of phages T4 and DDVI with the use of the neutralization reaction and electron-microscopic observation of the phage-antibody complexes, it has been possible to establish that the head of phage T4 consists of proteins which have antigenic determinants of two types: The first type is identical to the antigens of the head of phage DDVI, and the second type is apparently absent in phage DDVI. The phage DDVI head contains mostly determinants which are common to the phage T4 head, since it was not possible to detect antigenically specific components in the phage DDVI head. The tail sheaths of phage T4 and DDVI appear to be identical in the antigenic respect. A difference has been observed in the fibers and the base plates of the phages investigated. The presence of the following three types of antigens has been established: 1) common to phages T2, T4, and DDVI, 2) common to phages T4 and DDVI, and 3) specific for each phage investigated.  相似文献   

12.
N4-Aminocytidine, a nucleoside analog, is a potent mutagen towards phages, bacteria, Drosophila and mammalian cells in culture. In vitro, biochemical studies indicate that this reagent acts by being incorporated into DNA. To elucidate the mechanism of N4-aminocytidine mutagenesis, it is essential to identify the nature of DNA sequence alterations taking place during the mutagenesis. We have analyzed the nucleotide sequence changes in the lac promoter-lacZ alpha region of M13mp2 phage induced by treatment of phage-infected Escherichia coli with N4-aminocytidine. The sequence alterations of DNA samples from 89 mutants of the phage were determined. These mutants had single point mutations, except one mutant, in which a double point mutation was detected. Several hot spots were found: however, there are no apparent relations to particular DNA sequences regarding the locations of these spots. All the mutations are transitions; neither transversions nor deletions/insertions were found. A feature in these transitions is that the A/T to G/C and G/C to A/T changes occur at approximately equal rates. The overall picture of the mutagenesis is consistent with a scheme in which misincorporation and misreplication caused by the modified cytosine structure are the key steps in the DNA replication leading to transitions. Similar nucleotide alterations were found for the mutagenesis induced by an alkylated derivative, N'-methyl-N4-aminocytidine. N4-Aminocytidine also induced reversions of these mutants; both A/T to G/C and G/C to A/T transitions again took place.  相似文献   

13.
T7+ phage are unable to plate on a strain of Shigella sonnei D2 371-48. Spontaneous phage mutants arise (ss--mutants) that are able to plate on this strain of Shigella. We have shown by complementation studies and genetic crosses that the ss--mutation maps in gene 10, the structural gene for the major protein of the capsid. This finding implies that the gene 10 protein may interact with a host protein during phage development and that the abortive infection of T7 observed in S. sonnei D2 371-48 with T7+ phage may be a defect in head morphogenesis. Our studies also reveal that various T7 strains commonly contain deletions in nonessential regions. T7 ss--mutants selected after growth of T7+ on Shigella D2 371-48 often acquire a deletion in the 0.7 gene that is not necessary for the ss--phenotype. Finally, we have found a new nonessential region of the T7 chromosome that is located between 33 and 35.5% of the T7 genome length.  相似文献   

14.
The Escherichia coli isolate CT596 excludes infection by the Myoviridae T4 ip1(-) phage that lacks the encapsidated IPI* protein normally injected into the host with the phage DNA. Screening of a CT596 genomic library identified adjacent genes responsible for this exclusion, gmrS (942 bp) and gmrD (708 bp) that are encoded by a cryptic prophage DNA. The two genes are necessary and sufficient to confer upon a host the ability to exclude infection by T4 ip1(-) phage and other glucosyl-hydroxymethylcytosine (glc-HMC) Tevens lacking the ip1 gene, yet allow infection by phages with non-glucoslyated cytosine (C) DNA that lack the ip1 gene. A plasmid expressing the ip1 gene product, IPI*, allows growth of Tevens lacking ip1 on E. coli strains carrying the cloned gmrS/gmrD genes. Members of the Teven family carry a diverse and, in some cases, expanded set of ip1 locus genes. In vivo analysis suggests a family of gmr genes that specifically target sugar-HMC modified DNA have evolved to exclude Teven phages, and these exclusion genes have in turn been countered by a family of injected exclusion inhibitors that likely help determine the host range of different glc-HMC phages.  相似文献   

15.
Bacteriophages draw scientific attention in medicine and biotechnology, including phage engineering, widely used to shape biological properties of bacteriophages. We developed engineered T4-derived bacteriophages presenting seven types of tissue-homing peptides. We evaluated phage accumulation in targeted tissues, spleen, liver and phage circulation in blood (in mice). Contrary to expectations, accumulation of engineered bacteriophages in targeted organs was not observed, but instead, three engineered phages achieved tissue titres up to 2 orders of magnitude lower than unmodified T4. This correlated with impaired survival of these phages in the circulation. Thus, engineering of T4 phage resulted in the short-circulating phage phenotype. We found that the complement system inactivated engineered phages significantly more strongly than unmodified T4, while no significant differences in phages’ susceptibility to phagocytosis or immunogenicity were found. The short-circulating phage phenotype of the engineered phages suggests that natural phages, at least those propagating on commensal bacteria of animals and humans, are naturally optimized to escape rapid neutralization by the immune system. In this way, phages remain active for longer when inside mammalian bodies, thus increasing their chance of propagating on commensal bacteria. The effect of phage engineering on phage pharmacokinetics should be considered in phage design for medical purposes.  相似文献   

16.
B E Korba  J B Hays 《Cell》1982,28(3):531-541
Lambda bacteriophages grown on arl mutants of Escherichia coli ("Arl-" phages) display intermediate levels of cytosine methylation: less 5-methylcytosine (m5C) than phages grown on wild-type bacteria ("Arl+" phages) but more than phages grown on dcm mutants, and thus lacking the methylated sequences (Cm5CATGG) characteristic of E. coli K-12 bacteria ("Dcm-" phages). "Arl-" phages are one twelfth as resistant to Eco RII restriction (recognition site CCATGG) as "Arl+" phages, but 40-fold more resistant than "Dcm-" phages. Chromatographic analyses show the 5-methylcytosine content of "Arl-" DNA to be one third that of "Arl+" DNA. Altered cytosine methylation frequency correlates with two previously described properties of "Arl-" phages, increased genetic recombination and unusual sensitivity of phage DNA to endonuclease S1, which are absent in phages grown on dcm or dcm arl bacteria. Methylated/unmethylated heteroduplex DNA prepared in vitro (one strand from Eco RII-modified phages/one from "Dcm-" phages) is highly recombinogenic but not S1-sensitive. We hypothesize that hemimethylated CCATGG sites in "Arl-" DNA are necessary and sufficient for enhanced recombination, and necessary but not sufficient for S1 sensitivity.  相似文献   

17.
Extracts of DNA polymerase I defective Escherichia coli infected with phage T4 contain an exonuclease activity that removes thymine dimers from UV-irradiated DNA previously nicked with T4 UV endonuclease. This activity is not expressed if cells are infected in the presence of chloramphenicol. The enzyme has a requirement for divalent cation and is not affected by caffeine, but excision is inhibited in the presence of proflavine. The enzyme is present in all phage T4 mutants thus far examined, including 25 UV-sensitive mutants isolated during the course of the experiments, all of which are defective in the v gene. A similar activity can be detected in cells infected with phages T2, T3, and T6, but not in cells infected with phage T7.  相似文献   

18.
利用噬菌体表面展示抗体库对不同血清处理U251细胞吸附的抗体进行差异筛选,筛选获得血清饥饿细胞吸附的阳性噬菌体克隆96个和血清饥饿后恢复血清培养细胞吸附的阳性噬菌体克隆82个。细胞免疫组化检测发现应答反应差异较大的抗体2个,即血清饥饿培养细胞特异反应的抗体1个(11号抗体)和血清饥饿后恢复血清培养细胞特异反应的抗体1个(2号抗体),其中2号抗体在恢复血清培养细胞中的应答反应强于血清饥饿培养细胞,是一个血清应答基因蛋白特异抗体,且在血清饥饿后恢复血清培养不同时间的U251细胞中具有一定的特异性反应。该研究为寻找与细胞周期调控有关的因子奠定了基础,同时对肿瘤的诊断和治疗研究也有重要意义。  相似文献   

19.
Self-splicing group I introns are being found in an increasing number of bacteriophages. Most introns contain an open reading frame coding for a homing endo-nuclease that confers mobility to both the intron and the homing endonuclease gene (HEG). The frequent occurrence of intron/HEG has raised questions whether group I introns are spread via horizontal transfer between phage populations. We have determined complete sequences for the known group I introns among T-even-like bacteriophages together with sequences of the intron-containing genes td, nrdB, and nrdD from phages with and without introns. A previously uncharacterized phage isolate, U5, is shown to contain all three introns, the only phage besides T4 found with a "full set" of these introns. Sequence analysis of td and nrdB genes from intron-containing and intronless phages provides evidence that recent horizontal transmission of introns has occurred among the phages. The fact that several of the HEGs have suffered deletions rendering them non-functional implies that the homing endonucleases are of no selective advantage to the phage and are rapidly degenerating and probably dependent upon frequent horizontal transmissions for maintenance within the phage populations. Several of the introns can home to closely related intronless phages during mixed infections. However, the efficiency of homing varies and is dependent on homology in regions flanking the intron insertion site. The occurrence of optional genes flanking the respective intron-containing gene can strongly affect the efficiency of homing. These findings give further insight into the mechanisms of propagation and evolution of group I introns among the T-even-like bacteriophages.  相似文献   

20.
The abortive infection of bacteriophage T7 in Shigella sonnei D2 371-48 is characterized by a premature inhibition of phage DNA replication and nucleolytic breakdown of all phage DNA. Mutations in T7 gene 10 which are recessive to the presence of the wild-type allele can alleviate the restriction of phage growth. Phage T3 productively infects S. sonnei D2 371-48, as does a T7-T3 hybrid phage that contains, in particular, a gene 10 of T7 origin. It is the presence of T3 DNA ligase that allows phage growth on S. sonnei D2 371-48, and this enzyme can also rescue wild-type T7 from the abortive infection. T7+ is therefore functionally ligase deficient during the infection of S. sonnei D2 371-48; this deficiency is a result of the expression of the phage capsid protein, but it is independent of the assembly of the protein into a procapsid or other morphogenetic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号