首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian enzymes in late cholesterol biosynthesis have been localized uniformly over the endoplasmic reticulum by enzymatic methods. We report here the first mammalian cholesterol biosynthetic enzyme unequivocally localized at the surface of intracellular lipid storage droplets. NAD(P)H steroid dehydrogenase-like protein (Nsdhl), a mammalian C-3 sterol dehydrogenase involved in the conversion of lanosterol into cholesterol, was localized on lipid droplets by immunofluorescence microscopy and subcellular fractionation. Nsdhl was localized on lipid droplets even when cell growth exclusively depended on cholesterol biosynthesis mediated by this enzyme. Depletion of fatty acids in culture medium reduced the development of lipid droplets and caused Nsdhl redistribution to the endoplasmic reticulum. Elevating oleic acid in medium induced well developed, Nsdhl-positive lipid droplets, and simultaneously caused a reduction in cellular conversion of lanosterol into cholesterol. Manipulated human NSDHL with a missense mutation (G205S) causing a human embryonic developmental disorder, congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome, could no longer be localized on lipid droplets. Although the expression of wild-type NSDHL could restore the defective growth of a CHO cholesterol auxotroph, LEX2 in cholesterol-deficient medium, the expression of NSDHL(G205S) failed to do so. These results point to functional significance of the localization of Nsdhl on lipid droplets. Functional significance was also suggested by the colocalization of Nsdhl on lipid droplets with TIP47, a cargo selection protein for mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. These results add to the growing notion that the lipid droplet is an organelle endowed with more complex roles in various biological phenomena.  相似文献   

2.
Squalene epoxidase, encoded by the ERG1 gene in yeast, is a key enzyme of sterol biosynthesis. Analysis of subcellular fractions revealed that squalene epoxidase was present in the microsomal fraction (30,000 × g) and also cofractionated with lipid particles. A dual localization of Erg1p was confirmed by immunofluorescence microscopy. On the basis of the distribution of marker proteins, 62% of cellular Erg1p could be assigned to the endoplasmic reticulum and 38% to lipid particles in late logarithmic-phase cells. In contrast, sterol Δ24-methyltransferase (Erg6p), an enzyme catalyzing a late step in sterol biosynthesis, was found mainly in lipid particles cofractionating with triacylglycerols and steryl esters. The relative distribution of Erg1p between the endoplasmic reticulum and lipid particles changes during growth. Squalene epoxidase (Erg1p) was absent in an erg1 disruptant strain and was induced fivefold in lipid particles and in the endoplasmic reticulum when the ERG1 gene was overexpressed from a multicopy plasmid. The amount of squalene epoxidase in both compartments was also induced approximately fivefold by treatment of yeast cells with terbinafine, an inhibitor of the fungal squalene epoxidase. In contrast to the distribution of the protein, enzymatic activity of squalene epoxidase was only detectable in the endoplasmic reticulum but was absent from isolated lipid particles. When lipid particles of the wild-type strain and microsomes of an erg1 disruptant were mixed, squalene epoxidase activity was partially restored. These findings suggest that factor(s) present in the endoplasmic reticulum are required for squalene epoxidase activity. Close contact between lipid particles and endoplasmic reticulum may be necessary for a concerted action of these two compartments in sterol biosynthesis.  相似文献   

3.
A novel type of membrane vesicles was formed in vitro from microsomes of Saccharomyces cerevisiae, which carries Dpm1p, an enzyme involved in dolichol-sugar synthesis, but not a typical secretory cargo. While COPII vesicles formed in vitro were sedimentable by centrifugation at 200,000g(max) for 15 min, the novel vesicles were not. However, they were sedimented by additional centrifugation at the same speed for 1 h. Immunoelectron microscopy showed that the Dpm1p-containing vesicles had small vesicular/saccular structures of around 40-50 nm in diameter. The addition of glycerol-3-phosphate and oleoyl-CoA, substrates for lipid biosynthesis, significantly enhanced the efficiency of vesicle budding in an ATP-dependent fashion. Dpm1p was localized to lipid droplets as well as endoplasmic reticulum. Fluorescence microscopy further showed that Dpm1p-GFP was present in restricted subregions in isolated lipid droplets. The possibility that the vesicles were intermediates from the endoplasmic reticulum to lipid droplets was examined, and their possible role is discussed.  相似文献   

4.
In this paper we report on the uptake and distribution of an exogenously supplied fluorescent phosphatidic acid analogue by Chinese hamster fibroblasts. Under appropriate in vitro incubation conditions, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidic acid was rapidly and preferentially transferred from phospholipid vesicles to cells at 2 degrees C. However, unlike similar fluorescent derivatives of phosphatidylcholine and phosphatidylethanolamine that remain restricted to the plasma membrane under such incubation conditions (Struck, D. K., and R. E. Pagano. 1080. J. Biol. Chem. 255:5405--5410), most of the phosphatidic acid-derived fluorescence was localized at the nuclear membrane, endoplasmic reticulum, and mitochondria. This was shown by labeling cells with rhodamine- containing probes specific for mitochondria or endoplasmic reticulum, and comparing the patterns of intracellular NBD and rhodamine fluorescence. Extraction and analysis of the fluorescent lipids associated with the cells after treatment with vesicles at 2 degrees or 37 degrees C revealed that a large fraction of the fluorescent phosphatidic acid was converted to fluorescent diglyceride, phosphatidylcholine, and triglyceride. Our findings suggest that fluorescent phosphatidic acid may be useful in correlating biochemical studies of lipid metabolism in cultured cells and studies of the Intracellular localization of the metabolites by fluorescence microscopy. In addition, this compound provides a unique method for visualizing the endoplasmic reticulum in living cells.  相似文献   

5.
Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases.  相似文献   

6.
Fan J  Andre C  Xu C 《FEBS letters》2011,585(12):1985-1991
Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.  相似文献   

7.
17beta-Hydroxysteroid dehydrogenase type 11 (17beta-HSD11) is a member of the short-chain dehydrogenase/reductase family involved in the activation and inactivation of sex steroid hormones. We recently identified 17beta-HSD11 as a gene that is efficiently regulated by peroxisome proliferator-activated receptor-alpha PPARalpha in the intestine and the liver [Motojima K (2004) Eur J Biochem271, 4141-4146]. In this study, we characterized 17beta-HSD11 at the protein level to obtain information about its physiologic role in the intestine and liver. For this purpose, specific antibodies against 17beta-HSD11 were obtained. Western blotting analysis showed that administration of a peroxisome proliferator-activated receptor-alpha agonist induced 17beta-HSD11 protein in the jejunum but not in the colon, and to a much higher extent than in the liver of mice. A subcellular localization study using Chinese hamster ovary cells and green fluorescent protein-tagged 17beta-HSD11 showed that it was mostly localized in the endoplasmic reticulum under normal conditions, whereas it was concentrated on lipid droplets when they were induced. A pulse-chase experiment suggested that 17beta-HSD11 was redistributed to the lipid droplets via the endoplasmic reticulum. Immunohistochemical analysis using tissue sections showed that 17beta-HSD11 was induced mostly in intestinal epithelia and hepatocytes, with heterogeneous localization both in the cytoplasm and in vesicular structures. A subcellular fractionation study of liver homogenates confirmed that 17beta-HSD11 was localized mostly in the endoplasmic reticulum when mice were fed a normal diet, but was distributed in both the endoplasmic reticulum and the lipid droplets of which formation was induced by feeding a diet containing a proliferator-activated receptor-alpha agonist. Taken together, these data indicate that 17beta-HSD11 localizes both in the endoplasmic reticulum and in lipid droplets, depending on physiologic conditions, and that lipid droplet 17beta-HSD11 is not merely an endoplasmic reticulum contaminant or a nonphysiologically associated protein in the cultured cells, but a bona fide protein component of the membranes of both intracellular compartments.  相似文献   

8.
Neutral lipid is stored in spherical organelles called lipid droplets that are bounded by a coat of proteins. The protein that is most frequently found at the surface of lipid droplets is adipocyte differentiation-related protein (ADRP). In this study, we demonstrate that fusion of either the human or mouse ADRP coding sequences to green fluorescent protein (GFP) does not disrupt the ability of the protein to associate with lipid droplets. Using this system to identify targeting elements, discontinuous segments within the coding region were required for directing ADRP to lipid droplets. GFP-tagged protein was employed also to examine the behavior of lipid droplets in live cells. Time lapse microscopy demonstrated that in HuH-7 cells, which are derived from a human hepatoma, a small number of lipid droplets could move rapidly, indicating transient association with intracellular transport pathways. Most lipid droplets did not show such movement but oscillated within a confined area; these droplets were in close association with the endoplasmic reticulum membrane and moved in concert with the endoplasmic reticulum. Fluorescence recovery analysis of GFP-tagged ADRP in live cells revealed that surface proteins do not rapidly diffuse between lipid droplets, even in conditions where they are closely packed. This system provides new insights into the properties of lipid droplets and their interaction with cellular processes.  相似文献   

9.
Tgl3p, the major triacylglycerol lipase of the yeast Saccharomyces cerevisiae, is a component of lipid droplets but is also present in the endoplasmic reticulum in a minor amount. Recently, it was shown that this enzyme can also serve as a lysophospholipid acyltransferase (Rajakumari, S., and Daum, G. (2010) Mol. Biol. Cell 21, 501–510). Here, we describe the effects of the presence/absence of triacylglycerols and lipid droplets on the functionality of Tgl3p. In a dga1Δlro1Δare1Δare2Δ quadruple mutant lacking all four triacylglycerol- and steryl ester-synthesizing acyltransferases and consequently the lipid droplets, the gene expression of TGL3 was only slightly altered. In contrast, protein level and stability of Tgl3p were markedly reduced in the absence of lipid droplets. Under these conditions, the enzyme was localized to the endoplasmic reticulum. Even the lack of the substrate, triacylglycerol, affected stability and localization of Tgl3p to some extent. Interestingly, Tgl3p present in the endoplasmic reticulum seems to lack lipolytic as well as acyltransferase activity as shown by enzymatic analysis and lipid profiling. Thus, we propose that the activity of Tgl3p is restricted to lipid droplets, whereas the endoplasmic reticulum may serve as a parking lot for this enzyme.  相似文献   

10.
Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologs of the mammalian oxysterol-binding protein (Osh1-7) have been proposed to function as STPs. To evaluate this proposal we took two approaches. First we used dehydroergosterol (DHE) to visualize sterol movement in living cells by fluorescence microscopy. DHE was introduced into the PM under hypoxic conditions and observed to redistribute to lipid droplets on growing the cells aerobically. Redistribution required ATP and the sterol acyltransferase Are2, but did not require PM-derived transport vesicles. DHE redistribution occurred robustly in a conditional yeast mutant (oshΔ osh4-1(ts)) that lacks all functional Osh proteins at 37°C. In a second approach we used a pulse-chase protocol to analyze the movement of metabolically radiolabeled ergosterol from the ER to the PM. Arrival of radiolabeled ergosterol at the PM was assessed in isolated PM-enriched fractions as well as by extracting sterols from intact cells with methyl-β-cyclodextrin. These experiments revealed that whereas ergosterol is transported effectively from the ER to the PM in Osh-deficient cells, the rate at which it moves within the PM to equilibrate with the methyl-β-cyclodextrin extractable sterol pool is slowed. We conclude (i) that the role of Osh proteins in non-vesicular sterol transport between the PM, ER and lipid droplets is either minimal, or subsumed by other mechanisms and (ii) that Osh proteins regulate the organization of sterols at the PM.  相似文献   

11.
Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy.  相似文献   

12.
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin – an inhibitor of the de novo sphingolipid synthesis pathway – inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.  相似文献   

13.
Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.  相似文献   

14.
We have investigated the metabolism and intracellular translocation of a fluorescent derivative of phosphatidic acid, 1-acyl-2-[(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl] phosphatidic acid (C6-NBD-PA), and its metabolites, in Chinese hamster fibroblasts. This derivative is rapidly transferred from phospholipid vesicles to cells at 2 degrees C, and results in fluorescent labeling of the mitochondria, endoplasmic reticulum, and nuclear membrane of intact cells during its metabolism predominantly to fluorescent diglyceride (Pagano, R. E., Longmuir, K. J., Martin, O. C., and Struck, D. K. (1981) J. Cell Biol. 91, 872-877). In the present study, we show that, upon warming to 37 degrees C, the fluorescence associated with the endoplasmic reticulum was greatly reduced, while cytoplasmic lipid droplets, which were initially nonfluorescent, became intensely labeled. This altered intracellular distribution of fluorescence was accompanied by further metabolism of the fluorescent lipids to NBD-triglyceride and NBD-phosphatidylcholine. Although NBD-fatty acid was also produced, it was not re-utilized in the synthesis of other cellular lipids. Subcellular fractionation experiments demonstrated that primarily NBD-labeled triglyceride was associated with the intracellular lipid droplets, although substantial amounts of NBD-labeled phosphatidic acid, phosphatidylcholine, and diglyceride were also present in the whole cell extracts. This finding was confirmed in a separate experiment in which the fluorescent lipids associated with the intracellular lipid droplets were selectively and irreversibly photobleached in situ. Extraction and analysis of the fluorescent lipids revealed that NBD-triglyceride was preferentially photobleached. These results indicate that "sorting" of the NBD-labeled lipids into various cytoplasmic compartments accompanied their metabolism.  相似文献   

15.
arv1Delta mutant cells have an altered sterol distribution within cell membranes (Tinkelenberg, A.H., Liu, Y., Alcantara, F., Khan, S., Guo, Z., Bard, M., and Sturley, S. L. (2000) J. Biol. Chem. 275, 40667-40670), and thus it has been suggested that Arv1p may be involved in the trafficking of sterol in the yeast Saccharomyces cerevisiae and also in humans. Here we present data showing that arv1Delta mutants also harbor defects in sphingolipid metabolism. [(3)H]inositol and [(3)H]dihydrosphingosine radiolabeling studies demonstrated that mutant cells had reduced rates of biosynthesis and lower steady-state levels of complex sphingolipids while accumulating certain hydroxylated ceramide species. Phospholipid radiolabeling studies showed that arv1Delta cells harbored defects in the rates of biosynthesis and steady-state levels of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. Neutral lipid radiolabeling studies indicated that the rate of biosynthesis and steady-state levels of sterol ester were increased in arv1Delta cells. Moreover, these same studies demonstrated that arv1Delta cells had decreased rates of biosynthesis and steady-state levels of total fatty acid and fatty acid alcohols. Gas chromatography/mass spectrometry analyses examining different fatty acid species showed that arv1Delta cells had decreased levels of C18:1 fatty acid. Additional gas chromatography/mass spectrometry analyses determining the levels of various molecular sterol species in arv1Delta cells showed that mutant cells accumulated early sterol intermediates. Using fluorescence microscopy we found that GFP-Arv1p localizes to the endoplasmic reticulum and Golgi. Interestingly, the heterologous expression of the human ARV1 cDNA suppressed the sphingolipid metabolic defects of arv1Delta cells. We hypothesize that in eukaryotic cells, Arv1p functions in the sphingolipid metabolic pathway perhaps as a transporter of ceramides between the endoplasmic reticulum and Golgi.  相似文献   

16.
E Zinser  F Paltauf    G Daum 《Journal of bacteriology》1993,175(10):2853-2858
Organelles of the yeast Saccharomyces cerevisiae were isolated and analyzed for sterol composition and the activity of three enzymes involved in sterol metabolism. The plasma membrane and secretory vesicles, the fractions with the highest sterol contents, contain ergosterol as the major sterol. In other subcellular membranes, which exhibit lower sterol contents, intermediates of the sterol biosynthetic pathway were found at higher percentages. Lipid particles contain, in addition to ergosterol, large amounts of zymosterol, fecosterol, and episterol. These sterols are present esterified with long-chain fatty acids in this subcellular compartment, which also harbors practically all of the triacylglycerols present in the cell but very little phospholipids and proteins. Sterol delta 24-methyltransferase, an enzyme that catalyzes one of the late steps in sterol biosynthesis, was localized almost exclusively in lipid particles. Steryl ester formation is a microsomal process, whereas steryl ester hydrolysis occurs in the plasma membrane and in secretory vesicles. The fact that synthesis, storage, and hydrolysis of steryl esters occur in different subcellular compartments gives rise to the view that ergosteryl esters of lipid particles might serve as intermediates for the supply of ergosterol from internal membranes to the plasma membrane.  相似文献   

17.
Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms.  相似文献   

18.
Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by two distinct acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Both DGAT enzymes reside in the endoplasmic reticulum (ER), but DGAT2 also co-localizes with mitochondria and lipid droplets. In this report, we demonstrate that murine DGAT2 is part of a multimeric complex consisting of several DGAT2 subunits. We also identified the region of DGAT2 responsible for its localization to the ER. A DGAT2 mutant lacking both its transmembrane domains, although still associated with membranes, was absent from the ER and instead localized to mitochondria. Unexpectedly, this mutant was still active and capable of interacting with lipid droplets to promote TG storage. Additional experiments indicated that the ER targeting signal was present in the first transmembrane domain (TMD1) of DGAT2. When fused to a fluorescent reporter, TMD1, but not TMD2, was sufficient to target mCherry to the ER. Finally, the interaction of DGAT2 with lipid droplets was dependent on the C terminus of DGAT2. DGAT2 mutants, in which regions of the C terminus were either truncated or specific regions were deleted, failed to co-localize with lipid droplets when cells were oleate loaded to stimulate TG synthesis. Our findings demonstrate that DGAT2 is capable of catalyzing TG synthesis and promote its storage in cytosolic lipid droplets independent of its localization in the ER.  相似文献   

19.
Pollen tube elongation depends on the secretion of large amounts of membrane and cell wall materials at the pollen tube tip to sustain rapid growth. A large family of RAS-related small GTPases, Rabs or Ypts, is known to regulate both anterograde and retrograde trafficking of transport vesicles between different endomembrane compartments and the plasma membrane in mammalian and yeast cells. Studies on the functional roles of analogous plant proteins are emerging. We report here that a tobacco pollen-predominant Rab2, NtRab2, functions in the secretory pathway between the endoplasmic reticulum and the Golgi in elongating pollen tubes. Green fluorescent protein-NtRab2 fusion protein localized to the Golgi bodies in elongating pollen tubes. Dominant-negative mutations in NtRab2 proteins inhibited their Golgi localization, blocked the delivery of Golgi-resident as well as plasmalemma and secreted proteins to their normal locations, and inhibited pollen tube growth. On the other hand, when green fluorescent protein-NtRab2 was over-expressed in transiently transformed leaf protoplasts and epidermal cells, in which NtRab2 mRNA have not been observed to accumulate to detectable levels, these proteins did not target efficiently to Golgi bodies. Together, these observations indicate that NtRab2 is important for trafficking between the endoplasmic reticulum and the Golgi bodies in pollen tubes and may be specialized to optimally support the high secretory demands in these tip growth cells.  相似文献   

20.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号