首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The germination percentage of peach [ Prunus persica (L.) Batsch cv. Halford] seeds at 20°C was low (< 20%) after incubation at 5°C for as long as 35 days, but then increased considerably (> 40%) when the seeds were maintained at 5°C for longer than 42 days. Four zones of gibberellin-like activity were found in partially purified seed extracts. Gibberellin-like activity remained low in seeds incubated at 5°C for as long as 28 days, but increased significantly in three of these zones after 35 days, and in the fourth zone after 49 days. The increase in gibberellin-like activity was evident prior to the transfer of the seeds to 20°C. Moreover, seeds maintained at 5°C germinated at this temperature after 63 days. For seeds incubated and germinated at 20°C, both the germination percentage and the gibberellin-like activity remained low throughout the experimental period. Application of the growth retardant paclobutrazol to seeds after 28 days of a 49 day total incubation period at 5°C did not substantially reduce seed germination, although the increase in gibberellin-like activity was prevented. Seeds did, however, require a longer time to germinate after transfer to 20°C and were dwarfed in appearance. Application of GA3 to seeds prior to stratification increased the percentage germination of seeds only when they had been incubated at 5°C for at least 35 days. The major changes in gibberellin-like activity are, therefore, associated not so much with the processes which allow germination to take place in peach, but more with those processes which allow normal growth and development of the seedling.  相似文献   

2.
Germination of freshly harvested seeds of a non-dormant (ND) line (Stonehouse 319) of wild oats ( Avena fatua L.) was inhibited by incubation of the seeds at relatively high temperatures of 25 and 30°C. The germination inhibition in these seeds appeared to be a case of thermo-inhibition which was the direct effect of hightemperature treatment (HIT), since it did not persist after transferring the seeds to an optimum germination temperature of 20°C. Even a prolonged HTT of 30°C for over 5 weeks did not prevent germination of about 80% of the seeds transferred to 20°C. However, in a significant proportion of the seeds, thermo-dormancy was induced by 10 days of HTT at 30°C if the seeds were then incubated at sub-optimal temperatures of 5 to 15°C. This thermo-dormancy would appear to be 'restrictive' in form, since its expression was restricted to very specific conditions. Relatively low inclubation temperaturs of 5 and 10°C markedly slowed germination whether HTT was applied or not. The results suggest that thermo-inhibition and thermo-dormancy, induced during seasonal temperature fluctuations, may provide a survival mechanism for seeds of such ND lines as Stonehouse 319.  相似文献   

3.
Freshly harvested seeds of Arabidopsis thaliana, Columbia (Col) accession were dormant when imbibed at 25°C in the dark. Their dormancy was alleviated by continuous light during imbibition or by 5 weeks of storage at 20°C (after-ripening). We investigated the possible role of reactive oxygen species (ROS) in the regulation of Col seed dormancy. After 24 h of imbibition at 25°C, non-dormant seeds produced more ROS than dormant seeds, and their catalase activity was lower. In situ ROS localization revealed that germination was associated with an accumulation of superoxide and hydrogen peroxide in the radicle. ROS production was temporally and spatially regulated: ROS were first localized within the cytoplasm upon imbibition of non-dormant seeds, then in the nucleus and finally in the cell wall, which suggests that ROS play different roles during germination. Imbibition of dormant and non-dormant seeds in the presence of ROS scavengers or donors, which inhibited or stimulated germination, respectively, confirmed the role of ROS in germination. Freshly harvested seeds of the mutants defective in catalase (cat2-1) and vitamin E (vte1-1) did not display dormancy; however, seeds of the NADPH oxidase mutants (rbohD) were deeply dormant. Expression of a set of genes related to dormancy upon imbibition in the cat2-1 and vet1-1 seeds revealed that their non-dormant phenotype was probably not related to ABA or gibberellin metabolism, but suggested that ROS could trigger germination through gibberellin signaling activation.  相似文献   

4.
Dormancy and germination of olive embryos as affected by temperature   总被引:1,自引:0,他引:1  
Olive seeds do not germinate promptly when placed under favourable conditions, which is a problem in raising young plants for breeding or experimental purposes. In a series of experiments an investigation of the role of temperature in the germination of olive embryos was conducted. Naked, unchilled olive embryos ( Olea europaea L. cv. Chalkidikis), cultured in vitro at 20°C, had a germination capacity of 73%, whereas that of embryos which had previously been chilled at 10°C for 2 or more weeks reached 96%. Intact seeds did not germinate at 20°C unless they had previously been subjected to 10°C for 3 or 4 weeks. Embryos chilled while in the intact seed and excised just before transfer to 20°C, reacted in a similar way to naked embryos, but reached their maximum germination capacity after 4 weeks at 10°C. Under constant temperature conditions the highest germination percentage of embryos was observed at 10 and 15°C and the highest germination rate at 15°C, while a moderate capacity and rate of germination occurred at 20°C, and a very low percentage and rate at 25 and 30°C. Prechilling at 10°C did not affect germination at 15°C, but improved the percentage and the rate of germination at 20, 25 and 30°C. The germination percentages of embryos chilled for 1 or 2 weeks at 10°C and then transferred to 25°C were lower than those of similarly chilled embryos transferred to 20°C. The chilling effect could not be reversed at 25°C when the embryos had been chilled for 3 or more weeks. The results show that olive seeds exhibit a state of dormancy that is caused by factors residing partly in the endosperm and partly within the embryo.  相似文献   

5.
Effects of storage were tested on germination ofDioscorea composita (Dioscoreaceae) seeds. Freshly collected seeds and seeds stored at 25°C in paper bags from 1 to 11 mo or for 4 and 5 yr were used in most of the experiments. Seeds were tested for germination at 20, 25, 30, 35, 25–20, and 25–35°C in white light and in darkness. Initiation of germination was delayed in freshly harvested seeds, and dormancy was reduced in seeds stored for about 9 mo. Viability of the seeds decreased after 4 and 5 yr of storage.  相似文献   

6.
1. One temperature shift from 20 to 30°C in darkness induces 30–40% germination in Rumex obtusifolius seeds. The same germination percentages are found with heat treatment varying between 1 and 6h duration, indicating that the total heat sum of the temperature shift is not important.
2. Germination is greatly enhanced by three consecutive heat shifts of 1h at 30°C separated by 1h periods at 20°C.
3. The seeds are activated to a small extent after a slow warming (+2°Ch–1) from 20 to 30°C, followed by incubation for 1h at 30°C. Germination is much higher after rapid heating (+10°Ch–1) to 30°C, followed by 1h incubation at this temperature. Repeated fast heating treatments on four consecutive days enhances germination. Moderately rapid heatings (+3·3°Ch–1) give intermediate results.
4. The rate of cooling does not influence the germination percentage. Cooling alone cannot induce germination.
5. Heating alone from 15 to 25°C without cooling also activates germination. In this temperature range the seeds are more activated by rapid warming than by slow warming.
6. The ecological relevance of the response to different warming rate is discussed. The insensitivity of seeds to a slow warming might keep deeply buried seeds in a dormant stage.  相似文献   

7.
During stratification at 5°C indole-3-acetic acid (IAA) levels in embryos of Acer platanoides decreased during the early stages but subsequently increased again throughout the remainder of a 144 day period. The reduction in IAA levels in embryos of fruits stored at 17°C was even more pronounced, and in addition, no increase was observed after longer storage periods at this temperature, the levels of IAA remaining very low. Germination in seeds maintained at 5°C was not observed until after 120 days or longer, but germination potential increased at an earlier stage, as shown by the fact that seeds transferred to 20°C gave appreciable increases in germination after much shorter chilling periods. Endogenous IAA levels in embryos from seeds transferred to 20°C after a chilling period, long enough to break dormancy, increased within 24 h, i.e. before visible germination, to levels similar to those observed in embryos from seeds chilled continuously for 144 days. Embryos from seeds chilled for 120 days, i.e. when the samples already showed visible germination and when the endogenous IAA content was already high, showed no further increase in endogenous IAA during a three day incubation at 20°C. None of the treatments employed was effective in inducing germination of seeds or embryos from fruits stored at 17°C.  相似文献   

8.
Celery seeds ( Apium graveolens L.) given a germination induction period (3 days imbibition at 17°C in the light) could be prevented from germinating by up to 14 days subsequent exposure to high temperature (32°C), polyethylene glycol (PEG), abscisic acid (ABA) or dark (22°C). When the seeds were returned to 17°C in the light, germination occurred and, except for the high temperature treatment, was more rapid compared to seeds given a germination induction period only.
Celery seeds incubated for 3 days at 17°C in the light and then air-dried at 20°C germinated slowly when re-sown at 17°C in the light, and achieved only 19% germination after 21 days. Exposing the seeds to high temperature, PEG, ABA or dark for up to 14 days before drying maintained seed viability and subsequent germination was faster. The longer treatment periods gave increased benefit, and PEG was the most effective treatment. It is suggested that the effectiveness of the treatments in inducing dehydration tolerance relates to their ability to inhibit germination possibly via their prevention of cell expansion.  相似文献   

9.
Cypripedium macranthos is a wild orchid that is becoming endangered. Efficient methods for its propagation from seed, which is indispensable for conservation, production and breeding, have not been reported. The effects of sodium and calcium hypochlorite, pre‐chilling and cytokinins on the germination of seeds of Cypripedium macranthos Swartz were examined. The duration of treatment with a solution of hypochlorite prior to sowing was one of the critical factors that affected germination. Approximately 70% of seeds that had been treated with either a solution of NaClO that contained 0.5% available chlorine for 60 min or with one of Ca(ClO)2 with 3.2% available chlorine for 7 h, germinated after 3 months of culture at 20°C, subsequent to 2 months chilling at 4°C. Chilling seeds at 4°C prior to culture at 20°C was another factor that stimulated germination. Even chilling for 2 weeks had a promotive effect on germination, and chilling for 2 months enhanced it most effectively: the frequency of germination was 67% after 3 months of culture at 20°C. However, the promotive effects of chilling on germination were reduced by holding seeds at 20°C for 3 and 6 weeks prior to chilling treatment. Germination of 58‐70% was achieved by the addition of 1 µ M cytokinin to the medium, while the frequency was only 17% in cytokinin‐free medium. We report a reproducible and efficient method for enhancing seed germination of C. macranthos , which involves treatment with hypochlorite prior to sowing, and the combination of chilling at 4°C prior to germination and exposure to a cytokinin.  相似文献   

10.
Curt  Forsberg 《Physiologia plantarum》1966,19(4):1105-1109
A sterile germination study with seeds of some common phanerogamic water plants showed almost 100 per cent germination for seeds of Alisma plantago–aquatica, Baldellia ranunculoides and Nymphaea alba. Seeds of Potamogeton lucens could be germinated to about 40 per cent, seeds of Polygonum amphibium germinated sporadically while those of Cladium mariscus could not be germinated at all. Freshly harvested seeds of Alisma and Baldellia showed an ability to germinate at both 20°C and 35°C. A stratification period of one month at +4°C gave germination of all species tested, with the exception of Cladium. Potamogeton germinated in light only, the other species both in light and darkness. Treatment times for surface sterilization in disinfectants are given.  相似文献   

11.
Relatively high levels of dihydrozeatin and trans-zeatin were detected in unstratified seeds of Acer saccharum Marsh. Both cytokinins increased substantially over the first 20 days of stratification at 5°C and then fell rapidly to values well below original levels by first germination on day 55. In seeds held at 20°C, a non-afterripening temperature, cytokinin levels remained constant for the first 10 days and then declined to their lowest levels by day 20. Levels of putrescine, spermidine and spermine in the radicles and cotyledons did not change during the full course of the afterripening process, but large increments were noted during radicle emergence. A large increase in ethylene production at germination suggests that competition for S-adenosyl-methionine by the ethylene and polyamine biosynthetic pathways did not inhibit synthesis of ethylene or polyamines during seedling emergence and establishment. In seeds stratified at 20°C, ethylene showed an exceptionally large peak early in the stratification period, but polyamine contents remained low throughout the test. The present results are consistent with the hypothesis that cytokinins play a significant role in overcoming the metabolic block present in dormant seeds. This conclusion is supported by data showing that high levels of cytokinins develop concurrently with the start of tissue differentiation and at the time when abscisic acid and phenolic inhibitors decline in stratifying seeds. Changes in ethylene and polyamine contents did not correlate with any events in the afterripening process; however, large increases in levels of these substances were closely associated with the germinative process and, in the case of polyamines, specifically with the start of cell division.  相似文献   

12.
Aims:  This study evaluated the effect of temperature (0–38°C) and water activity ( a w: 0·87–0·99) on the lag phase prior to germination and the percentage of germination over time for Monilinia laxa , Monilinia fructicola and Monilinia fructigena .
Methods and Results:  More than 80% of viable conidia germinated at 25°C and 0·99 a w within 2 h for M. fructicola and M. fructigena and 4 h for M. laxa . There was no germination at 38°C, and all three Monilinia spp. germinated at 0°C. At the lowest a w (0·87), none of the Monilinia spp. was able to germinate at any of the incubation temperatures studied. Whereas at 0·90 a w, conidia were only able to germinate at 15, 25 and 30°C for the three species studied, except for M. fructicola at 15°C. In contrast, at 0·95, 0·97 and 0·99 a w, germination occurred at all studied temperatures less 38°C. Generally, the lag phase was longer at low levels of a w (0·90–095), and differences were more evident as temperatures were far from the optimum (0–5°C).
Conclusions:  Germination and lag phase period were markedly influenced by temperature and a w, and in general when conditions of temperature and a w were suboptimal, the lag phase was longer and the percentage of germination was lower.
Significance and Impact of the Study:  Knowledge of the germination requirements of this fungus is important in order to understand their behaviour in natural situations and to provide baseline data required for the construction of new prediction models. Our study might be used to develop a predictive model to understand and control the disease caused by Monilinia spp.  相似文献   

13.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

14.
To better understand the germination ecophysiology of the genus Lonicera , the dormancy class, temperature requirements for embryo growth and radicle emergence and phenology of seedling emergence were determined for Lonicera caerulea var. emphyllocalyx . At maturity, seeds have an underdeveloped embryo (approximately 28% of the length of full-grown embryos). Embryos in fresh seeds grew to full length at 15, 20, 20/10 and 25/15°C within 3 weeks, but failed to grow at ≤ 10°C and at 30°C. Radicles emerged from 86–100% of freshly matured seeds in light at 15, 20, 20/10 and 25/15°C within 28 days, but failed to emerge at 10°C. Radicles emerged equally well in a 12 h photoperiod and in continuous darkness at 25/15°C. Rapid embryo growth and germination over a range of conditions indicate that seeds of this taxon have morphological dormancy (MD); this is the first report of MD in a species of Lonicera . Seeds are dispersed in summer, at which time high temperatures promote embryo growth. Embryos grow to the critical length for germination in approximately 1 month; the peak of seedling emergence occurs in early autumn. Radicles emerged within 2 months from 98% of seeds buried at soil depths of 2 cm and 10 cm in the field in August in Sapporo, Japan; thus, seeds have no potential to form a persistent soil seed bank. However, seeds sown too late in autumn for embryos to grow remained viable and germinated the following summer when temperatures were high enough to promote embryo growth.  相似文献   

15.
J. W. Bradbeer 《Planta》1968,78(3):266-276
Summary The dormancy of freshly harvested hazel seeds appears to be induced by inhibitors occuring mainly in the testa and pericarp. Although d abscisic acid may not be one of the natural inhibitors involved, d,l abscisic acid has been shown to strongly inhibit the germination of hazel seeds, probably through its antagonism towards the action of gibberellin. Dry storage of hazel nuts causes a deeper state of dormancy (secondary dormancy) to be superimposed on the primary dormancy. It is suggested that secondary dormancy consists of a block to gibberellin synthesis. The essential effect of chilling intact hazel seeds, which is the natural means of breaking their dormancy, may be to activate the mechanism for gibberellin synthesis, the subsequent synthesis of gibberellin being thought to occur at the germination temperature (20°C) and not at the chilling temperature (5°C).  相似文献   

16.
Portulaca oleracea , a C4 species, is reported to be a serious weed in 45 crops in 81 countries. Experiments were conducted in the laboratory, the screenhouse and the field to determine the influence of environmental factors on seed germination and seedling emergence of P. oleracea . In the laboratory, germination in the dark was low and was not influenced by the tested temperatures (35/25°C, 30/20°C and 25/15°C alternating day/night temperatures). In the light/dark regime, however, germination was lower at 25/15°C and 35/25°C than at 30/20°C (70%, 75% and 81% germination, respectively). In conditions of 106 mM sodium chloride or −0.34 MPa osmotic potential, seeds germinated to only 50% of maximum germination of the control. Germination was not influenced by buffered pH solutions ranging from 5 to 9. In the screenhouse, germination was greatest for seeds placed on the soil surface, but emergence declined with increasing seed burial depth in soil; no seedlings emerged from the depth of 2 cm. Seedling emergence and seedling dry matter were markedly reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 t ha−1. In the field, seedling emergence of P. oleracea was greater under zero till (ZT) (17–20%) than under minimum tillage (6–10%), a likely reflection of low seed burial and exposure of seeds to light with a ZT system. This study identifies some of the factors enabling P. oleracea to be a widespread weed in the humid tropics, and the information could contribute to improved control strategies.  相似文献   

17.
Abstract. The effects of diurnally alternating temperatures and of prolonged burial in the soil on germination response of redroot pigweed ( Amaranthus retroflexus L.) seeds to ethylene were investigated. Percentage germination in a 12 h/12 h, 23° C/35° C temperature regime roughly equalled that observed at constant 35° C, and greatly exceeded that observed at 30°C. Preincubation for 61 d in alternating temperatures, which were gradually increased to simulate soil warming in spring, caused little germination in the absence of ethylene, but considerably enhanced sensitivity to ethylene. Seeds kept in soil in the same temperature regime failed to show the response to ethylene, and the soil itself removed ethylene from the soil atmosphere.
After burial in a field plot either over winter or during the summer, seeds had a very low ethylene response threshold (0.01−0.05 cm3 m−3) and strong response to ethylene (70–95% germination at 51 cm3 m−3 compared to 1–20% without ethylene). Germinability of seeds buried overwinter declined between 10 May (85%) and 24 May (7%), and 90% of those recovered on or after 24 May had a visible rupture in the seed coat. Apparently, germination had begun during burial, but was arrested by unknown causes in an early phase and was followed by seed deterioration.
Although the role of ethylene in germination of buried seeds remains uncertain, the greatly enhanced sensitivity to ethylene observed in pigweed seeds after burial deserves further investigation.  相似文献   

18.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

19.
Phase-contrast microscopy coupled with image analysis has been used to study the germination of single spores of Clostridium botulinum and to investigate the variation of germination lag of individual spores in a population (biovariability). The experiment was repeated at five different temperatures between 20°C and 37°C to look at the effect of temperature on the biovariability of the spore germination. Data analysis shows that the germination lag distribution is skewed, with a tail, and that its shape is affected by the temperature. The origin of this biovariability is not exactly known, but could be due to a distribution of characteristics (e.g. permeabilities) or molecules (e.g. lytic enzymes) in the spore population. The method developed in this study will help us to describe and better understand the kinetics of spore germination and how this is influenced by different environmental factors such as temperature and other factors that influence germination.  相似文献   

20.
Abstract Seeds of Polemonium reptans var. reptans , a perennial herb of mesic deciduous forests in eastern North America, mature in late May-early June, and a high percentage of them are dormant. Seeds afterripened (came out of dormancy) during summer when kept in a nylon bag under leaves in a nonheated greenhouse or on wet soil in a 30/15°C incubator. The optimum temperature for germination of nondormant seeds was a simulated October (20/10°C) regime. In germination phenology studies in the nonheated greenhouse, 20–30% of the seeds that eventually germinated did so in October, and the remainder germinated the following February and March. Since low (5°C) winter temperatures promote some afterripening (ca. 50%) and do not cause nondormant seeds to re-enter dormancy, seeds that fail to germinate in autumn may germinate in spring. Thus, the taxon has very little potential to form a persistent seed bank. The large spatulate embryos and ability of seeds to afterripen at high temperatures means that seeds of P. reptans var. reptans have nondeep physiological dormancy, unlike many herbaceous woodland species, which have morphophysiological dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号