首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Numerous studies have demonstrated a negative relationship between increasing habitat complexity and predator foraging success. Results from many of these studies suggest a non-linear relationship, and it has been hypothesised that some threshold level of complexity is required before foraging success is reduced significantly. We examined this hypothesis using largemouth bass (Micropterus salmoides) foraging on juvenile bluegill sunfish (Lepomis macrochirus) in various densities of artificial vegetation. Largemouth foraging success differed significantly among the densities of vegetation tested. Regression analysis revealed a non-linear relationship between increasing plant stem density and predator foraging success. Logistic analysis demonstrated a significant fit of our data to a logistic model, from which was calculated the threshold level of plant stem desity necessary to reduce predator foraging success. Studies with various prey species have shown selection by prey for more complex habitats as a refuge from predation. In this stydy, we also examined the effects of increasing habitat complexity (i.e. plant stem density) on choice of habitat by juvenile bluegills while avoiding predation. Plant stem density significantly effected choice of habitat as a refuge. The relationship between increasing habitat complexity and prey choice of habitat was found to be positive and non-linear. As with predator foraging success, logistic analysis demonstrated a significant fit of our data to a logistic model. Using this model we calculated the threshold level of habitat complexity required before prey select a habitat as a refuge. This density of vegetation proved to be considerably higher than that necessary to significantly reduce predator foraging success, indicating that bluegill select habitats safe from predation.Implications of these results and various factors which may affect the relationships described are discussed.  相似文献   

2.
Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources. Received: 1 June 1998 / Accepted: 12 October 1998  相似文献   

3.
Summary In situations where foraging sites vary both in food reward and predation risk, conventional optimal foraging models based on the criterion of maximizing net rate of energy intake commonly fail to predict patch choice by foragers. Recently, an alternative model based on the simple rule when foraging, minimize the ratio of mortality rate (u) to foraging rate (f) was successful in predicting patch preference under such conditions (Gilliam and Fraser 1987). In the present study, I compare the predictive ability of these two models under conditions where available patches vary both in predation hazard and foraging returns. Juvenile bluegill sunfish (Lepomis macrochirus) were presented with a choice between two patches of artificial vegetation differing in stem density (i.e. 100, 250, and 500 stems/m2) in which to forage. Each combination (100:250, 250:500, or 100:500) was presented in the absence, presence, and after exposure to a bass predator (Micropterus salmoides). Which patch of vegetation bluegills chose to forage in, and foraging rate within each patch were recorded. Independent measurements of bluegill foraging rate and risk of mortality in the three stem densities provided the data for predicting patch choice by the two models. With no predator, preference between plots was consistent with the maximize energy intake per unit time rule of conventional optimality models. However, with a predator present, patch preference switched to match a minimize u/f criterion. Finally, when tested shortly after exposure to a predator (i.e. 15 min), bluegill preference appeared to be in a transitional phase between these two rules. Results are discussed with respect to factors determining the distribution of organisms within beds of aquatic vegetation.  相似文献   

4.
Predator-mediated interactions among the seeds of desert plants   总被引:2,自引:0,他引:2  
J. A. Veech 《Oecologia》2000,124(3):402-407
In theory, seed predators are capable of inducing indirect interactions among the seeds they consume. However, empirical evidence of predator-mediated interactions among seeds is rare. Rodents in the Heteromyidae are highly granivorous and therefore likely to induce indirect interactions among the seeds of desert plants. The indirect interactions may be in the form of apparent competition and apparent mutualism between seeds within a patch. Apparent competition exists when the survival of seeds of a focal species is lessened because of the presence of additional seeds of other species in the patch. Apparent mutualism exists when the presence of the other seeds results in an increase in survival of seeds of the focal species. By measuring seed removal from trays placed in the field, apparent competition between the seeds of several plant species was detected. Apparent mutualism might also exist, but there was no strong evidence of it. Apparent competition appeared most likely to occur among the species whose seeds were the most heavily predated. For instance, predation on seeds of Astragalus cicer, Oryzopsis hymenoides, and Sphaeralcea coccinea was substantial with more than 50% of the seeds removed from the trays, on average. The intensity of apparent competition (measured by the indirect effect, IS) between these species and two others was significant; IS ranged from –0.02 to –0.39 on a scale of 0 to –1. This indicates that, in some communities, indirect effects are most likely to exist when direct effects are strong. Received: 5 August 1999 / Accepted: 2 March 2000  相似文献   

5.
    
Björn Söderbäck 《Oecologia》1994,100(3):229-235
Two freshwater crayfish species, Astacus astacus L. and Pacifastacus leniusculus Dana, co-occur in some Swedish lakes. Observational studies indicate that the introduced, North American species P. leniusculus may gradually replace the native A. astacus, but the mechanism behind the replacement is not known. This study examined the direct effects of interspecific competition between the crayfish, and indirect effects of competitive interactions and fish (European perch, Perca fluviatilis L.) predation. Three different experiments with young-of-the-year (YOY) crayfish were performed. P. leniusculus was strongly dominant over similar-sized A. astacus in interference competition for shelter in a laboratory experiment. However, in a 35-day experiment in outdoor pools, A. astacus growth and survival were about equally affected by interactions with conspecifics and P. leniusculus. In contrast, P. leniusculus was significantly more affected by intraspecific competition than by competition with A. astacus, suggesting asymmetric competition between the two species. The presence of perch in outdoor ponds with mixed-species groups of the two crayfish species resulted in considerably higher predation rates on A. astacus than on P. leniusculus. Both species showed strong antipredator responses to perch by increasing refuge use. I suggest that higher perch predation rates on A. astacus originate from P. leniusculus being the superior species in interspecific competition for shelter. Because of displacement from refuges, A. astacus individuals become more exposed to the predator. This indirect effect of interactions among the two cray-fish species and the predator may be important in the observed in situ replacement of A. astacus by P. leniusculus.  相似文献   

6.
S. L. Chown  W. Block 《Oecologia》1997,111(2):216-224
South Georgia has many introduced plant and animal species, a consequence of its long history of human habitation. Introduced reindeer have a strong effect on the vegetation of the Stromness Bay area by causing the replacement of indigenous species by grazing-tolerant grasses such as the exotic Poa annua, and in certain circumstances, the indigenous Festuca contracta. Recently it has been argued that an introduced predatory carabid has contributed to declines in the abundance and an increase in the body size of adults of the indigenous perimylopid beetle Hydromedion sparsutum. However, it also appears that body size of these beetles is smaller in areas where exotic grasses predominate compared to undisturbed areas. Here we test the hypothesis that by causing the spread of poorer quality grasses, especially the exotic Poa annua, reindeer may be having an indirect effect on H. sparsutum. To do this we examined the nutritional ecology of H. sparsutum larvae on four grass species which form a major part of its diet, viz. the indigenous Parodiochloa flabellata, Phleum alpinum and Festuca contracta, and the exotic Poa annua. Larvae showed the highest growth rate on Parodiochloa flabellata, followed by Phleum alpinum, F. contracta and Poa annua. These differences are due to poorer absorption of the exotic grass, and poorer utilization of the absorbed material in the case of F. contracta. Poor growth of larvae on F. contracta appears to be due to its low water and nitrogen contents, whereas in the case of P. annua a combination of low water content and high nitrogen content may be responsible for low growth rates. Low growth rates associated with poor-quality food may lead either to a prolongation of the life cycle or of the length of feeding bouts of an insect. Neither option appears to be feasible for H. sparsutum, and this means that the outcome of feeding on poorer-quality foods would be a reduction in final adult size. This has fitness consequences for the beetle. Hence it appears that by causing the spread of grasses that are unsuitable for growth of H. sparsutum, reindeer may be having an indirect effect on this beetle species. Received: 18 August 1996 / Accepted: 7 February 1997  相似文献   

7.
Models in which all hosts respond in the same fashion to challenge by disease make a number of clear predictions regarding the ameliorating effect of predation on disease burden in prey populations. However, natural populations are typically exposed to a broad spectrum of stressors, some of which can induce changes in an individual's susceptibility to infection and transmission, as well as vulnerability to mortality once infected. When only a subset of the population is exposed to these other factors, host populations will express some heterogeneity in resistance to disease. Here I investigate the influence that such heterogeneity can have on the predicted beneficial epidemiological effect of predators on certain homogeneous prey populations. Results show that, under some conditions, predation can exacerbate disease burden in the heterogeneous prey population. I conclude that such a possibility might have implications for wild and domesticated animal management programs.  相似文献   

8.
Summary Two congeneric damselfly species, Enallagma traviatum and E. aspersum, dominate the littoral macroinvertebrates of Bays Mountain Lake and of the adjacent fish-free Ecology Pond, respectively (northeastern Tennessee, USA). Extending previous experimental studies, we test seven hypotheses concerning the role of fish (bluegill sunfish, Lepomis macrochirus) and larvaldragonfly (Anax junius) predation, competitive effects on damselflies, and the interaction between competition and predation, in determining invertebrate dominance in these communities. Three types of experiments were conducted: an enclosure experiment within Ecology Pond, an outdoor replicated tub experiment, and a laboratory behavior experiment. The in-situ enclosure experiment showed that E. traviatum larvae were more susceptible to Anax predation than were E. aspersum larvae; a tendency toward greater vulnerability to fish of E. aspersum compared with E. traviatum was not statistically significant. The outdoor tub experiment confirmed both of these trends with statistically significant results. In the tubs, both predators inhibited feeding of both zygopterans (as indicated by reduced fecal mass), particularly for E. aspersum in the presence of fish. This effect appears to have been primarily indirect, mediated through exploitation of the zooplankton. We also detected competitive effects of E. traviatum on E. aspersum: E. traviatum reduced the emergence and increased the exposure above the substrate of E. aspersum. In the absence of predators, E. traviatum inhibited feeding of E. aspersum via interference. In the laboratory behavior experiment, predators inhibited crawling by E. aspersum. E. aspersum was more exposed than was E. traviatum; it swam and crawled more than did E. traviatum, considerably increasing these movements at night. Over all, E. traviatum consistently appeared to be the more cryptic of the two species, and E. aspersum appeared to be much more active. Our results suggest an explanation for the clear difference in structure between communities like Bays Mountain Lake and Ecology Pond: predaceous fish eliminate large invertebrate predators and shift the community toward cryptic forms at relatively low densities, reflecting the effects of both predation and exploitation competition. In the absence of fish, large invertebrate predators are less able to deplete littoral invertebrates but may favor the more active forms, perhaps because these are better able to avoid invertebrate predators.  相似文献   

9.
10.
The prey species composition and feeding rate of the pit-making ant lion larva,Myrmeleon bore Tjeder, which inhabits open sandy areas, were examined. Not less than 30 prey species, most of which were ants, were collected during a research period of 1.5 years. First instar larvae most often (81.1%) captured ants. Although 3rd instar larvae captured larger-sized prey than individuals of any other instar, they also captured small prey. The feeding rate of 3rd instar larvae was estimated by using the frequency of observed predation (FOP; (no. of ant lions handling a prey)/(total no. of pits observed)), the prey-handling time and the rhythm of daily foraging activity. FOP ofM. bore larvae was constant on the whole from spring to autumn. It was estimated that each captured 1.25 prey per day on average during this period. This estimate, however, was the feeding rate for days on which there was no rain. Assuming that the larvae cannot capture prey due to pit destruction when there is more than 10 mm of rainfall per day, the figure was reduced to 1.03 prey/day. The estimated feeding rate was evaluated with reference to larval foraging behavior.  相似文献   

11.
Spiller DA  Schoener TW 《Oecologia》1990,83(2):150-161
Summary To determine the effect of lizards on webspider populations, we conducted a long-term field experiment in the Bahamas. Numbers of spider individuals were about 3 times higher in lizard-removal enclosures than in control enclosures with natural densities of lizards. Dietary analyses showed that lizards ate spiders and that lizard and spider diets overlapped substantially. Lizards reduced biomass of prey consumed by spiders; details indicated that they reduced biomass of large (> 4 mm) prey consumed by spiders more than biomass of small (4 mm) prey. Similarly, lizards reduced biomass of large aerial arthropods caught in sticky traps but not biomass of small aerial arthropods. We found no evidence that the lizard effect on prey consumption by spiders was caused by a spatial shift from areas with high aerial arthropod abundance to areas with low aerial arthropod abundance. Lizards reduced adult female cephalothorax width and fecundity of spiders. In a separate experiment, food-supplemented spiders were more fecund than control spiders. This study indicates that the interaction between lizards and spiders includes both predation and competition for food.  相似文献   

12.
A laboratory experiment was conducted to determine whether the sea star Asterias forbesi and the naticid gastropod Euspira heros feed on surfclams, Spisula solidissima, in an additive or non-additive manner. Predators were allowed to feed on clams with conspecifics and in the presence of the other predator species. Clam mortality (measured as the rate of decline of clam number) and predator feeding rates were noted. To determine the effects of temperature on interactions among the predators, the experiment was conducted at three different temperatures. At all temperatures, feeding rate of each predator was not affected by the presence of the other species, and clam mortality in the presence of both predators was predictable from mortality in the presence of a single predator species. These additive interactions are most likely a result of habitat partitioning between the predators, with naticid snails being infaunal and sea stars being epifaunal. Previous studies in a variety of systems show no clear pattern of occurrence of non-additive interactions. Relatively small differences in predator or prey behavior may be responsible for the presence or absence of non-additive interactions. Received: 6 August 1998 / Accepted: 25 January 1999  相似文献   

13.
Summary The insect fauna of water-filled tree holes in southern Britain consists primarily of the mosquitoes Aedes geniculatus, Anopheles plumbeus, Culex torrentium, and a benthic detritivorous fauna that includes primarily the scirtid beetle Prionocyphon serricornis and the chironomid midge Metriocnemus martinii. Culex torrentium has been documented only relatively recently in tree holes but all three species of mosquitoes partition the resource in space and time. When mosquito larvae were forced to coexist in natural tree holes at limiting densities and at higher than natural levels of interspecific encounter, there was no evidence that Aedes geniculatus or Anopheles plumbeus affected pupation success, pupal weight, or development time of the other or that either Aedes geniculatus or C. torrentium affected the survivorship, pupation success, pupal weight, and biomass yield of the other. When A. geniculatus at limiting densities were forced in natural tree holes to live without or to coexist with natural or twice natural densities of P. serricornis and M. martinii, the presence, absence, or superabundance of the benthic insects did not affect pupation success or pupal weight of A. geniculatus; development time of A. geniculatus was faster when a superabundance of the benthic fauna was present. Effects of the benthic fauna on A. geniculatus are slight and the only significant interaction is facilitative, not competitive. The pattern of habitat segregation among treehole mosquitoes in southern Britain is characteristic of their respective genera and we propose that this pattern is more likely (but not certain) to have arisen through a process of independent evolution than through competitively driven niche shifts among already coexisting species.  相似文献   

14.
Mark C. Belk 《Oecologia》1998,113(2):203-209
Previous studies suggested that differences in age at maturity among populations of bluegill sunfish (Lepomis macrochirus) were not genetically based, but rather were a phenotypic response to the presence of predators. I conducted two experiments to determine if the presence of largemouth bass affected age at maturity in bluegill sunfish. Bluegills from three populations were tested to see if the response to the threat of predation varied among source populations. Juvenile bluegills were maintained in the presence of predators or in controls with no contact with predators. Refuge use and growth were monitored during the experiments and reproductive activity was evaluated when bluegills reached age 1. Bluegills from one population exhibited delayed maturity in the presence of predators. Individuals from the other two populations showed no significant differences between predator and control treatments. The population that responded to the presence of predators had a history of high predation levels over the past 30–40 years. The other populations had a history of low levels of predation. This study suggests that presence of predators can induce phenotypic shifts in age at maturity of bluegills, but that the magnitude of response varies among populations in a manner consistent with historical patterns of coexistence. Received: 7 August 1996 / Accepted: 8 August 1997  相似文献   

15.
Chifu Huang  Andrew Sih 《Oecologia》1991,85(4):530-536
Summary We used a complete block design to experimentally study direct and indirect interactions in a three trophic-level freshwater system consisting of a top predator, the green sunfish, Lepomis cyanellus, an intermediate predator, small-mouthed salamander larvae, Ambystoma barbouri, and prey, hatchling isopods, Lirceus fontinalis. This system occurs naturally in small stream pools in central Kentucky; experiments were done in laboratory pools. Salamander larvae ate isopods and thus had a direct, negative effect on isopod survival. Accordingly, isopods responded to the presence of salamander larvae by increasing their tendency to bury themselves in the sand substrate. Fish ate salamanders and thus had a direct, negative effect on salamander survival. Salamanders responded to fish presence by increasing their time spent under plexiglass plates that simulate refuge rocks. The overall effect of fish on isopods depended on the presence of salamanders. In the absence of salamanders, fish predation on isopods had a direct, negative effect on isopod survival; isopods thus responded to the presence of fish by burying themselves in the sand. With salamanders present, fish had a positive overall effect on isopod survival; i.e., direct, negative effects of fish on isopods were outweighed by indirect, positive effects. Indirect positive effects of fish on isopods came through a reduction in salamander predation rates on isopods in the presence of fish. The mechanism involved both a decrease in the number of salamanders (a trophic-linkage indirect effect; cf. Miller and Kerfoot 1987) and a reduction in the feeding rate of individual salamanders on isopods (a behavioral indirect effect). The decrease in individual salamander feeding rates on isopods was due to reductions in both salamander activity and in spatial overlap between salamanders and isopods in the presence of fish. The latter effect reflected the fact that salamanders and isopods used different refuges from fish; salamanders went under refuge plates, whereas isopods primarily buried themselves in sand. Estimates of the relative importance of various direct and indirect effects of sunfish on isopods suggested that positive, behavioral indirect effects were of roughly the same magnitude as direct, negative effects, both of which were more important than were trophic-linkage indirect effects. Contrary to expectations, the presence of isopods did not affect the refuge use or survival of salamanders in the presence of fish.  相似文献   

16.
Summary We investigate how body size of two coexisting Daphnia species varies among 7 lakes that represent a gradient of predation risk. The two species segregate vertically in stratified lakes; D. galeata mendotae is typically smaller and more eplimnetic than D. pulicaria. The extent of vertical habitat partitioning, however, varies seasonally within and among lakes in apparent response to predation intensity by epilimnetic planktivorous fishes. Daphnia pulicaria uses the epilimnion at low levels of fish predation but is restricted to the hypolimnion under high fish predation, whereas D. galaeta mendotae always utilizes the epilimnion. The species display contrasting patterns of genetic variation in neonate size and size at maturity. D. pulicaria is larger in lakes with higher fish and Chaoborus densities whereas D. galeata mendotae is smaller. This contrast in body size in lakes with high predation is associated with greater habitat segregation in those lakes. In lakes with low predation risk, the two species are similar in body size at birth and maturity.Authorship order alphabetical  相似文献   

17.
David D. Hart 《Oecologia》1992,91(2):220-228
Summary Experimental studies were used to examine the mechanisms governing the distribution and abundance of two major patch types in unshaded reaches of Augusta Creek, Michigan (USA). One patch type is dominated by Cladophora glomerata, a macroalga potentially able to monopolize space, whereas the other type is comprised of a low-growing, epilithic microalgal lawn inhabited by several species of sessile grazers (especially the caddisflies Leucotrichia pictipes and Psychomyia flavida). Cladophora patches are absent from mid-channel sites characterized by current velocities ca. 50 cm s–1; caging experiments indicate that their absence is due to grazing by crayfish (Orconectes propinquus). Cladophora's presence in sites with velocities >50 cm s–1 apparently results in part because crayfish foraging activity is impaired in high flow regimes. The presence of Cladophora strongly affects various other invertebrates due to its alteration of abiotic and biotic characteristics of the microhabitat. For example, the abundance of sessile grazers (e.g. Leucotrichia and Psychomyia) that inhabit microalgal patches is negatively correlated to the abundance of Cladophora, whereas the abundance of several other invertebrates (e.g. Stenonema mayflies and Taeniopteryx stoneflies) is positively correlated to Cladophora's abundance. Therefore, in some portions of this system, crayfish act as keystone predators because of their ability to regulate the abundance of Cladophora, which in turn has strong positive and negative effects on other components of the community. Cladophora does not always monopolize space at high velocities in the absence of crayfish, however. If sessile grazers arrive at such sites before Cladophora, they can prevent its establishment. Thus, where crayfish are absent, the likelihood that a site will be dominated by either Cladophora patches or sessile grazer — microalgal lawn patches depends on two sets of stochastic processes: (1) those that create bare space (e.g. disturbance and grazer emergence); and (2) those controlling the timing of recruitment by Cladophora or grazers at these bare sites. These priority effects (i.e. the ability of grazers and Cladophora to inhibit each other's establishment) contribute to the marked spatial heterogeneity of these two patch types. Collectively, these results demonstrate how interactions between competition, predation, and physical factors can generate a complex mixture of community patterns.  相似文献   

18.
Summary Two distinct forms of killer whale (Orcinus orca) occur off the coast of British Columbia, Alaska and Washington State. These have different diets, and may be reproductively isolated. Because the primary food of transient whales (pinnipeds) is a potential competitor for the primary food of resident whales (salmon), or for the smaller fishes on which salmon feed, there should be an indirect interaction between the two forms of killer whale. We use simple mathematical models to show that this interaction will be either of a plus-minus type, or a plus-plus type (indirect mutualism), depending on whether or not pinnipeds and residents are on the same trophic level. In the case of the plus-minus interaction, increasing the population density or improving the environmental conditions of transients will increase the population density of residents, while increasing resident populations will reduce the equilibrium population size of transients. In the case of the plus-plus interaction, increasing the population density or improving the environmental conditions of transients will increase the population density of residents, while increasing resident populations will reduce the equilibrium population size of transients. In the case of the plus-plus interaction, increasing the population density or improving the environmental conditions of transients will increase the population density of residents, and vice versa. Such effects may not be currently manifest due to reduced populations at most levels in the food web. Regardless, considering such indirect interactions may be important for the management of many of the species involved, and can also provide a valuable framework for examining the evolution of the two forms of killer whales. Frequency-dependent indirect interactions, acting in concert with density-dependence within populations and disruptive selection on prey-type specific foraging characteristics, may have favoured reproductive isolation of the two forms of killer whales. We suggest that these two forms of whale are in the process of speciating, i.e., the two forms are incipient species.  相似文献   

19.
Synopsis We report effects of a thermal effluent on fish and zooplankton in an impoundment in South Carolina. The effects are not directly due to heated effluent but are indirect effects on the trophic dynamics of the system and depend on the physical structure of the system, season, and geography. As effluent from a nuclear reactor cooling pond (Pond C) enters the larger Par Pond it sporadically carries with it zooplankton and/or dead fish. Pond C produces high zooplankton densities in two situations: (1) high and hot effluent flow during cold winter weather; and (2) low (cool) effluent flow during warmer seasons. High zooplankton densities attract Blueback herring, Alosa aestivalis, which attract largemouth bass, Micropterus salmoides. Dying and dead bluegills, Lepomis macrochirus from Pond C (heat killed) are eaten by Par Pond bass which swim into effluent temperatures as high as 46°C to take these easy prey. Blueback herring and largemouth bass distribution are affected by the presence of food rather than by temperature. Par Pond blueback herring appear to be available to bass mainly when herring are near the effluent from Pond C and when they spawn in spring in the littoral zone. Because Blueback herring in Par Pond live only one year and because their presence in bass habitat is seasonal there is a strong seasonal component to bass food abundance. A previously reported annual oscillation in bass condition (K), with a peak in winter, occurs throughout Par Pond but is extreme in the vicinity of the effluent. The strong seasonality of food abundance for bass at the effluent correlates the winter peak in bass condition.  相似文献   

20.
Edward W. Evans 《Oecologia》1991,87(3):401-408
Summary The nature and relative strengths of intra versus interspecific interactions among foraging ladybeetle larvae were studied experimentally by measuring short-term growth rates of predators and reductions in population sizes of prey in laboratory microcosms. In these microcosms, ladybeetle larvae foraged singly or as conspecific or heterospecific pairs, for pea aphids on bean plants over a two-day period. Similarly sized third instar larvae ofHippodamia convergens andH. tredecimpunctata, H. convergens andH. sinuata, andH. convergens andCoccinella septempunctata, were tested in experiments designed to ensure that paired larvae experienced moderate competition. Interspecific competition in these experiments did not differ significantly from intraspecific competition, in that an individual's weight gain did not depend on whether its competitor was heterospecific or conspecific. Furthermore, aphid populations were reduced equally by heterospecific and conspecific pairs. These results suggest that there is little or no difference between intra and interspecific interactions among larvae of these ladybeetles when two similarly sized individuals co-occur on a host plant. Thus, the species diversityper se of assemblages of ladybeetle larvae may have little influence over the short term on the reduction of aphid populations by ladybeetle predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号