首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The hydroxylaminolysis of the penicilloyl moiety from [14C]penicillin G binding component (PBC) complexes of the Bacillus subtilis D-alanine carboxypeptidase and of the mixture of PBC's of Staphylococcus aureus was inhibited by denaturation of the complexes by heat (55 degrees), detergent (1% sodium dodecyl sulfate), or trichloroacetic acid. The kinetics of inhibition by denaturation were comparable to those of the inhibition of [14C]penicillin G binding to the PBC's and of carboxypeptidase activity of the B. subtilis enzyme under identical denaturing conditions. These data establish that the hydroxylaminolysis is an enzymatically catalyzed process suggesting that penicillin G is bound to an enzymatically active site. Treatment of the denatured [14C]penicillin G-carboxypeptidase complex with sodium borohydride or at pH 12 resulted in the release of the penicilloyl moiety. These results are consistent with a carboxylic ester bond for the penicilloyl-PBC instead of a thiolester linkage as was initially presumed.  相似文献   

2.
1. Isolation of free and membrane-bound ribosomes from embryonic chick sternal-cartilage cells labelled for 4min with [14C]proline and their subsequent analysis for hydroxy[14C]proline indicated that cartilage procollagen biosynthesis occurs on bound ribosomes. 2. Nascent procollagen polypeptides on bound ribosomes isolated from cells labelled with [14C]lysine were found to contain hydroxy[14C]lysine indicating that hydroxylation of lysine commences while the growing chains are still attached to the ribosomes. 3. Analysis of bound ribosomes labelled with either [14C]proline or [14C]lysine on sucrose density gradients indicated that cartilage procollagen is synthesized on large polyribosomes in the range 250-400S. 4. Microsomal preparations isolated from cells pulse-labelled for 4 min with [14C]proline were used to determine the direction of release of nascent procollagen polypeptides. Puromycin induced the vectorial release of nascent procollagen polypeptides into the microsomal vesicles suggesting that the first step in the secretion of procollagen polypeptides is their transfer from the ribosomes through the membrane of the endoplasmic reticulum into the cisternal space. 5. The procollagen polypeptides secreted by cartilage cells were shown to be linked by inter-chain disulphide bonds. 6. Examination of the state of aggregation of pro-alpha chains in subcellular fractions isolated from cartilage cells labelled with [14C]proline for various periods of time have provided data on the timing and location of inter-chain disulphide-bond formation. This process commences in the rough endoplasmic reticulum after the release of completed pro-alpha chains from membrane-bound ribosomes. Pro-alpha chains isolated from fractions of smooth endoplasmic reticulum were virtually all present as disulphide-bonded aggregates, suggesting that either disulphide bonding is completed in this cellular compartment, or that procollagen needs to be in a disulphide-bonded form to be transferred to this region of the endoplasmic reticulum. 7. Comparison of these results with previously published data on disulphide bonding in tendon cells suggest that the rate of inter-chain disulphide-bond formation is significantly slower in cartilage cells.  相似文献   

3.
Breakdown of the covalent complex formed between [14C]penicillin G and higher molecular weight, cephalosporin-sensitive penicillin-binding proteins was studied using mixtures of the purified proteins isolated from membranes of Staphylococcus aureus and Bacillus subtilis. These penicillin-binding proteins were found to release the bound 14C label in a first order process characterized by half-lives of 10 to 300 min at 37 degrees C. Denaturation of the penicilloyl.penicillin-binding proctein complex prevented this release, indicating that the process is enzyme-catalyzed. [14C]Phenylacetylglycine was identified as the major labeled fragmentation product, indicating that these cephalosporin-sensitive penicillin-binding proteins, for which no in vitro transpeptidase or carboxypeptidase activity has been found, catalyze the same fragmentation of the bound penicilloyl moiety previously described for several penicillin-sensitive D-alanine carboxypeptidases.  相似文献   

4.
Aminopropylcobalamin (AP-Cbl), prepared from 3-chloropropylamine and cob(I)alamin, was immobilized on CNBr-activated Sephacryl beads. The product, Sephacryl-aminopropylcobalamin, contained ca. 1 μmol of AP-Cbl/ml of beads. Cobalamin-binding proteins in biological fluids were adsorbed selectively and quantitatively by Sephacryl-aminopropylcobalamin. After being washed to remove extraneous protein, the beads were photoirradiated to release the cobalamin-binding proteins as their aquacobalamin complexes. The latter could be converted to labeled cyanocobalamin complexes by treatment with [14C]KCN. The efficacy of this affinity chromatographic method is illustrated by the purification to near homogeneity and in high yield of three representative proteins: transcobalamin II from rabbit serum, intrinsic factor from human gastric juice, and R binder from human saliva.  相似文献   

5.
The initiation of the processing of apomucin was investigated using mucus glycoprotein synthesizing polysomes from rat gastric epithelial cells. The polysomes were isolated from cells labeled with [3H]palmitic acid and [14C]N-acetylgalactosamine, purified on Helix pomatia-Sepharose affinity column, dissociated to release peptidyl-tRNA, and chromatographed on DEAE-HPLC column to separate peptidyl-tRNA complexes from the free and ribosomal RNA and proteins. The analysis of the HPLC purified peptidyl-tRNA revealed that complexes were labeled with [3H]palmitic acid and [14C]N-acetylgalactosamine. Digestion of the peptidyl-tRNA with RNase released 3H and 14C labeled peptides, while alkaline degradation destroyed the complex and rendered the [3H]palmitic acid extractable with hexane. The treatment of the 3H and 14C labeled peptidyl-tRNA complexes with alpha-N-acetylgalactosaminidase led to the release of radiolabeled N-acetylgalactosamine, whereas alkaline borohydride reduction produced N-acetylgalactosaminitol. The fatty acid residues have been detected in peptidyl-tRNA containing 2,000Da peptides, whereas N-acetylgalactosamine was discernible on 5,000Da peptides.  相似文献   

6.
The major components of cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and d-xylanase (see 1,4-β-d-xylan xylanohydrolase, EC 3.2.1.8) complexes have been immobilized on glass beads activated by 3-aminopropyltriethoxysilane or 3-glycidoxypropyltrimethoxysilane. The final preparations contained over 20 mg protein g?1 glass beads. The activity retained was 71.6–98.1% for cellulase complexes and 81–100% for d-xylanase complexes. The immobilization of the enzymes spread their optimum pH range. Cellulose and d-xylan were quantitatively hydrolysed by the immobilized enzymes. The major reaction products were identified as a d-glucose and d-xylose respectively.  相似文献   

7.
Bombesin and its mammalian counterpart gastrin releasing peptide (GRP) are potent mitogens for Swiss 3T3 cells in which distinct high affinity receptors have been identified. We developed here a probe for specific ligand affinity chromatography by coupling biotin to [lys3]bombesin. The resulting biotinylated [lys3]bombesin (BLB) retained biological activity as judged by inhibition of [125I]GRP binding to intact cells and membrane preparations and stimulation of rapid Ca2+ mobilization and DNA synthesis in intact cells. Using this ligand and magnetised beads coated with streptavidin, we extracted differentially a single protein from detergent-solubilized Swiss 3T3 membranes in a BLB-dependent manner. Visualization was achieved either after autoradiograph of metabolically labelled proteins with [35S]methionine or by silver staining of larger preparations. In other experiments, elution of BLB-receptor complexes bound to streptavidin beads was carried out at neutral pH and the eluted fraction was reconstituted into phospholipid vesicles. This procedure revealed [125I]GRP binding activity that exhibited saturability, specificity and a 1946-fold increase in specific activity.  相似文献   

8.
Incubation of soluble complex III isolated from either yeast or beef heart mitochondria with 25-100 nmol of [14C]dicyclohexylcarbodiimide (DCCD)/nmol of cytochrome b followed by centrifugation through 10% sucrose or precipitation with trichloroacetic acid did not result in any changes in the appearance of the subunits of either complex. The [14C]DCCD was bound to cytochrome b and phospholipids in the yeast complex and with similar kinetics to both cytochrome b and subunit VIII (Mr = 4000-8000) plus phospholipids of the beef complex. Subunit VIII of the beef complex was partially extracted with chloroform:methanol; however, no subunit of this mobility was present in the yeast complex. Incubation of the beef complex in phosphate buffer for short times resulted in a doubling of the [14C]DCCD bound to cytochrome b relative to that to subunit VIII. Preincubation of both complexes with venturicidin prior to treatment with DCCD resulted in a 50% decrease in the binding of [14C]DCCD to cytochrome b. Reisolation of the beef complex III by precipitation with (NH4)2SO4 after incubation with [14C]DCCD resulted in the formation of a new band with an apparent molecular weight of 39,000 even in the zero time control. The [14C]DCCD was bound to subunit VIII and the core proteins but not to cytochrome b at all times, suggesting that precipitation with (NH)2SO4 in the presence of DCCD causes cross-linking of the subunits of complex III.  相似文献   

9.
Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg2+, and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4°C was somewhat improved.  相似文献   

10.
3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase (PEPCK), decreased esterification of [1-14C] oleate and [1-14C] myristate in hepatocytes from fed rats. In the absence of 3-mercaptopicolinate, adrenaline, noradrenaline, vasopressin or angiotensin II increased esterification to triacylglycerol of [1-14C] oleate but not [1-14C] myristate. Cyclic AMP decreased esterification of both oleate and myristate. In the presence of 3-mercaptopicolinate, stimulation of oleate esterification by the catecholamines, vasopressin or angiotensin II was increased, and stimulatory effects of these hormones on myristate esterification were observed. Adrenaline, noradrenaline, vasopressin or angiotensin II increased 14CO2 production from both [1-14C] oleate and [1-14C] myristate but the degree of stimulation was similar in the absence or presence of 3-mercaptopicolinate. The results indicate a role for the catecholamines and angiotensin II in the regulation of liver fat metabolism and emphasize the potential importance of changes in activity of PEPCK as determinants of hepatic carbon flux.  相似文献   

11.
Recent studies of a number of volatile aromatic hydrocarbons have suggested that the formation of covalently bound metabolites arises solely through the intermediate formation of phenols. This study further examines the involvement of 1-naphthol in the in vivo and in vitro formation of covalently bound metabolites and pulmonary bronchiolar necrosis by naphthalene. Marked differences were observed in the rate of 1-naphthol formation in lung and liver microsomal incubations without correspondingly large differences between the rates of formation of covalently bound metabolites from naphthalene and 1-naphthol. Glutathione decreased covalent binding in hepatic microsomal incubations containing 14[C]1-naphthol but did not result in the formation of any of the glutathione adducts isolated from identical incubations containing 14[C]naphthalene. Tissue levels of covalently bound radioactivity in mice treated with 14[C]1-naphthol or 14[C]naphthalene were similar; however, in contrast to studies with naphthalene, 1-naphthol administration did not deplete tissue glutathione nor result in detectable tissue injury. These studies indicate that 1-naphthol is not an obligate intermediate in the formation of covalently bound metabolites from naphthalene nor does it appear to be a more proximate lung toxic metabolite.  相似文献   

12.
The chemical stability and release of isoproterenol bound by diazotation to an insoluble agarose matrix has been investigated. It is demonstrated, by a double labeling procedure ([3H]isoproterenol and [14C]-spacer arm), that the bound ligand is readily released in a soluble form. This occurs primarily through a chemical hydrolysis of the arm-linked ligand from the cyanogen bromide-activated agarose, and can be observed under extensive washing procedures as well as under more “physiological” incubation conditions. The instability of the agarose-arm linkage should lead to a critical analysis of physiological effects obtained with agarose bound hormones in vitro.  相似文献   

13.
Covalently bound C3b is released from cell surfaces (EAC1423 and zymosan-C3b) on incubation under physiologic conditions. The release of C3b from cell surfaces occurs by the cleavage of the covalent bond. Sodium dodecyl sulfate (SDS) abolishes the release, thereby indicating the requirement of the native structure of C3b in this process. The phenomenon of release of C3b from cell surfaces has also been observed in the fluid-phase system by using C3b-[3H]glycerol. The kinetics of the release of [3H]glycerol from C3b-[3H]glycerol were studied at 37 degrees C in 0.15 M phosphate buffer, pH 7.4. The first-order rate constant was found to be 0.028 +/- 0.003 hr-1. The release does not take place in either 8 M urea or 6 M guanidine hydrochloride, at pH 7.4. Under alkaline conditions, the rate of release is unaffected in the presence of SDS, indicating that the release in this pH range is not dependent on the native structure of the protein. From the Arrhenius plot in the temperature range 18 to 37 degrees C, an apparent activation energy for the hydrolysis reaction of 21.2 kcal/mol was calculated. The release phenomenon is exclusive for ester-linked complexes, as inferred by the absence of release of [3H]threonine from C3b-[3H]threonine, wherein the linkage is of the amide type. The presence or absence of the C3a portion of the molecule has no effect on the rate of release. The modification of the -SH group of C3i-/C3b-[3H]glycerol alters the rate of hydrolysis of the ester bond between C3i/C3b and [3H]glycerol. Protease inhibitors (PMSF, benzamidine HCl, and DFP) do not alter the rate of release, indicating that the hydrolysis reaction is not due to trace amounts of contaminating proteases. Thus, it appears that some chemical group(s) of C3i/C3b is (are) involved in the intramolecular hydrolysis of the ester bond between C3i/C3b and small molecules. This phenomenon may play an important role in the release of C3b from receptive surfaces once the biologic functions that require covalently bound C3b have been mediated.  相似文献   

14.
Uricase was found to be stabilized by protamine from salmon testis. Protamine was then bound to controlled-pore glass beads aminohexyl CPG 500 using glutaraldehyde. Microbial uricase was readily immobilized on the protamine bound to glass beads. The immobilized uricase proved to be stable even at 70 degrees C, whereas free uricase was inactivated at 45 degrees C and showed activity over a broader pH range than free uricase. Automated analysis of uric acid was facilitated using the immobilized uricase. The standard curve for uric acid was linear in the range of 2 to 10 micrograms/sample and passed through the origin. This automated procedure was also applicable to the determination of uric acid in human serum. Protamine bound to glass beads is expected to be useful for the simple immobilization and stabilization of enzymes.  相似文献   

15.
Properties of the penicillin-binding proteins of Escherichia coli K12,.   总被引:177,自引:0,他引:177  
Benzyl[14C]penicillin binds to six proteins with molecular weights between 40000 and 91000 in the inner membrane of Escherichia coli. Two additional binding proteins with molecular weights of 29000 and 32000 were sometimes detected. All proteins were accessible to benzyl[14C]penicillin in whole cells. Proteins 5 and 6 released bound benzyl[14C]penicillin with half times of 5 and 19 min at 30 degrees C but the other binding proteins showed less than 50% release during a 60-min period at 30 degrees C. The rate of release of bound penicillin from some of the proteins was greatly stimulated by 2-mercaptoethanol and neutral hydroxylamine. Release of benzyl[14C]penicillin did not occur if the binding proteins were denatured in anionic detergent and so was probably enzymic. No additional binding proteins were detected with two [14C]cephalosporins. These beta-lactams bound to either all or some of those proteins to which benzyl[14C]penicillin bound. No binding proteins have been detected in the outer membrane of E coli with any beta-[14C]lactam. The binding of a range of unlabelled penicillins and cephalosporins were studied by measuring their competition for the binding of benzyl[14C]penicillin to the six penicillin-binding proteins. These results, together with those obtained by direct binding experiments with beta-[14C]lactams, showed that penicillins bind to all six proteins but that at least some cephalosporins fail to bind, or bind very slowly, to proteins 2, 5 and 6, although they bind to the other proteins. Since these cephalosporins inhibited cell division and caused cell lysis at concentrations where we could detect no binding to proteins 2, 5 and 6, we believe that these latter proteins are not the target at which beta-lactams bind to elicit the above physiological responses. The binding properties of proteins 1, 3, and 4 correlate reasonably well with those expected for the above killing targets.  相似文献   

16.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C- labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C] ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14 C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

17.
We have previously classified 35 of our respiration-deficient mutants into seven complementation groups and one "overlapping" mutant which does not complement mutants from groups I and II. In this paper we report on the biochemical characterization of representatives of complementation groups I, II, VII, and the "overlapping" mutant. We show that these mutants all have a defect in complex I of the electron-transport chain. The general features of these mutants are: (1) a low rate of O2 consumption in whole cells; (2) a low rate of release of 14CO2 from [2-14C] pyruvate, [1-14C] pyruvate, and [3-14C] beta-hydroxybutyrate; (3) a low rate of release of 14CO2 from [5-14C] glutamate and [1-14C] glutamate in mutants from groups II, VII, and the "overlapping" mutant, whereas a significant amount of 14CO2 is released in mutants from group I; (4) a substantial rate of release of 14CO2 from [U-14C] asparate; (5) in isolated mitochondria, succinate and alpha-glycerol phosphate stimulate O2 consumption whereas substrates which generate NADH, such as malate, do not; and (6) there is little or no rotenone-sensitive NADH oxidase activity in isolated mitochondria.  相似文献   

18.
Homogenates of adult Schistosoma mansoni contain enzymes which transferred [14C]mannose, [14C]glucose, and [14C]galactose from GDP-[U-14C]mannose, UDP-[U-14C]glucose, and UDP-[U-14C]galactose respectively to a lipid acceptor; in comparison, free [14C]mannose, GDP-[U-14C]fucose, and UDP-[U-14C]acetyl-glucosamine were poorly transferred. The lipid acceptor is believed to be an intermediate in the glycosylation of the worm's glycoproteins and in the biosynthesis of oligosaccharides and glycolipids. The tegument of adult worms was isolated by the freeze-thaw procedure and sugars associated with macromolecules in this fraction were analyzed; the major monosaccharide components were glucose, galactose, and mannose. These results suggest that the mechanism of glycosylation of the adult schistosome's tegumental macromolecules may occur through the glycosyl transferase system. The schistosome mannosyl transferase (EC 2.4.1), which is membrane bound was solubilized with 0.1% Triton X-100 without loss of activity; after density gradient centrifugation there was a peak of enzymic activity in a region of density 1.08, which could not be associated with any particular organelle.  相似文献   

19.
Schistosoma mansoni: surface membrane isolation by polycationic beads   总被引:1,自引:0,他引:1  
The Schistosoma mansoni surface membrane complex was isolated by binding polycationic beads to the worm surface in a sucrose- or sorbitol-acetate buffer, pH 5.0, at 4 C. The ratio of incorporation [3H]cholesterol/[14C]arachidonic acid was measured as well as the specific activities of the alkaline phosphatase (EC 3.1.3.1), Type I phosphodiesterase (EC 3.1.4.1), and Ca2+-adenosine triphosphatase (EC 3.6.1.3). The results indicated that membranes isolated on beads were of comparable or greater purity than membranes isolated by sucrose gradient centrifugation. The isolation procedure was rapid (30 min) and produced membrane fractions whose cytoplasmic surfaces were probably exposed.  相似文献   

20.
Three proteins of the inner mitochondrial membrane of Neurospora crassa were found to be covalently modified with a derivative of pantothenic acid. One of these proteins is a subunit of cytochrome c oxidase and two are subunits of the ATPase-ATP synthase. Cells of a pantothenate auxotroph of N. crassa were labeled with [14C]pantothenic acid, and mitochondrial proteins containing radiolabeled pantothenate were detected by electrophoresis of detergent-solubilized mitochondria. Mitochondria from cells that were colabeled with [14C]pantothenate and [3H]leucine were reacted with specific antisera against the cytochrome c oxidase and F1-ATPase enzyme complexes. Electrophoresis of the labeled subunits of these isolated complexes showed that the [14C]pantothenate-associated peptides corresponded to [3H]leucine-labeled subunit 6 of cytochrome c oxidase and two [3H]leucine-labeled subunits (tentatively identified as subunits 8 and 11) of the ATPase-ATP synthase. Pantothenate modification of these enzyme subunits, which are synthesized on extramitochondrial ribosomes, may contribute to their transport and assembly into mitochondria, or it may participate in the catalytic activity of the assembled enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号