首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contrary to early predictions of sperm competition theory, postcopulatory sexual selection favoring increased investment per sperm (e.g., sperm size, sperm quality) has been demonstrated in numerous organisms. We empirically demonstrate for Drosophila melanogaster that both sperm quality and sperm quantity independently contribute to competitive male fertilization success. In addition to these independent effects, there was a significant interaction between sperm quality and quantity that suggests an internal positive reinforcement on selection for sperm quality, with selection predicted to intensify as investment per sperm increases and the number of sperm competing declines. The mechanism underlying the sperm quality advantage is elucidated through examination of the relationship between female sperm-storage organ morphology and the differential organization of different length sperm within the organ. Our results exemplify that primary sex cells can bear secondary sexual straits.  相似文献   

2.
3.
衰老是一个复杂的生物学过程,涉及到有害物质的积累导致整体生命功能的下降,生物的生理状况逐渐恶化,最终导致疾病和死亡。黑腹果蝇Drosophila melanogaster作为最重要的遗传学工具之一,近年来常被用于衰老的研究,以阐明衰老的发生与发展机制。本文结合本实验室的研究进展,综述了果蝇寿命调控的生理生化机制,如保幼激素、胰岛素/类胰岛素生长因子、TOR信号网络、腺苷酸活化蛋白激酶信号通路、热量限制和饮食限制、氧化应激、小分子RNA以及鞘脂类代谢都会对果蝇的寿命产生影响。除此之外,基因调控网络研究还能够发现潜在的与长寿相关的基因组区域,将有可能发现更多寿命相关基因。以果蝇为模式生物的研究,对于其他昆虫衰老、存活等种群生物学问题的研究以及天敌、益虫保育和害虫控制,具有十分重要的指导意义。  相似文献   

4.
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation.  相似文献   

5.
Y Sakoyama  Y Yaoita    T Honjo 《Nucleic acids research》1982,10(14):4203-4214
We found immunoglobulin switch (S) region-like sequences in DNAs of wide variety of organisms including sea urchin, yeast and Drosophila that do not produce immunoglobulins. DNA fragments carrying Smu-like sequences were cloned from Drosophila and the nucleotide sequence of a clone is almost identical to that of the mouse Smu region. Restriction fragments of Drosophila Smu-like sequences and their flanking regions seem to vary among Drosophila species. Possible evolutionary significance of the Smu-like sequence in invertebrates was discussed.  相似文献   

6.
Circadian clocks include control systems for organizing daily behavior. Such a system consists of a time-keeping mechanism (the clock or pacemaker), input pathways for entraining the clock, and output pathways for producing overt rhythms in behavior and physiology. In Drosophila melanogaster, as in mammals, neural circuits play vital roles in all three functional subdivisions of the circadian system. Regarding the pacemaker, multiple clock neurons, each with cell-autonomous pacemaker capability, are coupled to each other in a network. The outputs of different sets of clock neurons in this network combine to produce the normal bimodal pattern of locomotor activity observed in Drosophila. Regarding input, multiple sensory modalities (including light, temperature, and pheromones) use their own circuitry to entrain the clock. Regarding output, distinct circuits are likely involved for controlling the timing of eclosion and for generating the locomotor activity rhythms. This review summarizes work on all of these circadian circuits, and discusses the broader utility of studying the fly's circadian system.  相似文献   

7.
8.
The neuroectoderm of insects contains an initially indifferent population of cells which during later development will give rise to the progenitor cells of the neural and epidermal lineages. Experimental evidence indicates that cellular interactions determine which cells will adopt each one of these fates. Transplantation experiments suggest that a signal with neuralising character is required to stabilize the primary neural fate in 25% of all the neuroectodermal cells, which will develop as neuroblasts, and that an epidermalising signal contributes to suppress the neural fate in the remaining 75% of the cells, allowing in this way their development as epidermal progenitor cells. The invoked cell interactions are assumed to be mediated by the products of several genes forming a complex, not yet well understood network of interrelationships. Elements of this network are the proteins encoded by Delta and Notch, which appear to convey the regulatory signals between the cells; the proteins encoded by the achaete-scute gene complex, which regulate neural development; and the proteins encoded by the Enhancer of split gene complex, which give neuroectodermal cells access to epidermal development. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
10.
Sour is one of the fundamental taste modalities that enable taste perception in animals. Chemoreceptors embedded in taste organs are pivotal to discriminate between different chemicals to ensure survival. Animals generally prefer slightly acidic food and avoid highly acidic alternatives. We recently proposed that all acids are aversive at high concentrations, a response that is mediated by low pH as well as specific anions in Drosophila melanogaster. Particularly, some carboxylic acids such as glycolic acid, citric acid, and lactic acid are highly attractive to Drosophila compared with acetic acid. The present study determined that attractive carboxylic acids were mediated by broadly expressed Ir25a and Ir76b, as demonstrated by a candidate mutant library screen. The mutant deficits were completely recovered via wild-type cDNA expression in sweet-sensing gustatory receptor neurons. Furthermore, sweet gustatory receptors such as Gr5a, Gr61a, and Gr64a-f modulate attractive responses. These genetic defects were confirmed using binary food choice assays as well as electrophysiology in the labellum. Taken together, our findings demonstrate that at least two different kinds of receptors are required to discriminate attractive carboxylic acids from other acids.  相似文献   

11.
Artificial selection was carried out for over 45 generations to enhance and suppress expression of the mutation hairy on the Drosophila melanogaster wing. Whole chromosome mapping of X‐linked and autosomal modifiers of sense organ number displayed regional differences in magnitude and direction of their effects. Regional specificity of modifier effects was also seen in some interchromosomal interactions. Scanning electron microscopy allowed precise measurement of sense organ size and position along the L3 longitudinal wing vein. Sense organ size varied in a predictable fashion along the proximal–distal axis, and the dorsal pattern differed from the ventral pattern. The high and low selection lines differed most in the proximal portion of the L3 vein. Extra sense organs in the High line were often associated with vein fragments at locations predicted from ancestral vein patterns. Thus, regional specificity of polygenic or quantitative trait locus modifier effects was identified in several different parts of the wing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Oxygen consumption and lactic acid dehydrogenase (LDH) activity were determined for Drosophila melanogaster pupae and pharate adults exposed to 12 : 12 or 1 : 23 light-dark (LD) regime. Bimodal circadian fluctuations of oxygen consumption were found in pupae and pharate adults exposed to either LD regime and organisms appeared to demonstrate an anticipatory change in oxygen consumption associated with change in illumination. The oxygen-consumption trend for the entire period spent in the puparium showed a high at the time of emergence, but the diurnal rhythm showed a low at the time of emergence suggesting that emergence occurs at a low in the diurnal cycle. Emergence maximum showed a 3 hr lead over the oxygen-consumption maximum. Changing the LD regime produced similar changes in the phasing of both oxygen consumption and emergence rhythms. LDH activity did not demonstrate a detectable circadian rhythm but did show a steady decrease during pupal and pharate adult development.  相似文献   

13.
The ability of an organism to acquire O(2) from its environment is key to survival and can play an important role in dictating a species' ecological distribution. This study is the first, to our knowledge, to show a tight, phylogenetically independent correlation between hypoxia tolerance, traits involved in dictating O(2) extraction capacity and the distribution of a group of closely related fish species, sculpins from the family Cottidae, along the nearshore marine environment. Sculpins with higher hypoxia tolerance, measured as low critical O(2) tensions (P(crit)), inhabit the O2 variable intertidal zones, while species with lower hypoxia tolerance inhabit the more O(2) stable subtidal zone or freshwater. Hypoxia tolerance is phylogenetically independently associated with an enhanced O(2) extraction capacity, with three principal components accounting for 75 per cent of the variation in P(crit): routine O(2) consumption rate; mass-specific gill surface area; and whole blood haemoglobin (Hb)- O(2)-binding affinity (P(50)). Variation in whole blood Hb-O(2)P(50) is strongly correlated with the intrinsic O(2)-binding properties of the purified Hb while the differences in the concentration of the allosteric Hb modulators, ATP and GTP, provide a Hb system with substantial plasticity for survival in a highly O(2) variable environment.  相似文献   

14.
15.
16.
In spite of the extensive knowledge of the biology and the genetics of Drosophila melanogaster, the mechanisms by which this fly builds up cold tolerance remain poorly understood. Recent studies have reported that acclimation-mediated acquisition of cold tolerance is associated with moderate accumulation of sugars in drosophilids. However, it is not known whether there is a genuine causative link between cold tolerance and body sugar accumulation in Drosophila flies. We thus tested whether increasing body sugars levels, via dietary enrichment, will promote the cold tolerance of D. melanogaster adults. We gradually augmented the concentration of four different sugars (sucrose, fructose, glucose and trehalose) in rearing diets and tested the basal cold tolerance (acute and chronic). Using SIM-GC/MS approach, we verified whether feeding of larvae and adults on sugar-enriched diets was associated with increasing body sugars. We also tested whether development, body mass, fat stores, metabolites composition and metabolic pathways were altered by these dietary manipulations. The data confirm an effective incorporation of all sugars. Contrary to the expectation, cold tolerance was negatively affected by exogenous sugars, especially when supplemented at high concentrations. Rearing on high-sugar doses induced system-wide metabolic alteration associated with carbohydrate metabolism imbalance, a developmental delay and a fresh mass reduction. Our data show that high dietary sugars create a metabolic imbalance and negatively affect cold tolerance. This study provides an intriguing connection between nutritional conditions and thermal trait. It also underlines that careful attention should be given to dietary factors when studying thermal traits.  相似文献   

17.
18.
Summary We have analyzed the behavior of a transposing element (TE) in Drosophila melanogaster. The TE carries the structural genes white (w a or w aR=white apricot reversed) and roughest (rst +), which corresponds to the bands 3C2-6 and a genetic distance of approximately 0.7 map units. Due to the large size, TE can often be visualized in the polytene chromosomes as extra bands at the site of the transposon. We have identified over 100 different transpositions, most of which are situated in the large autosomes; genetic and cytological information is presented for 41 of these positions. Excision of TE may occur once in 1,000 chromosomes, while insertion in a new position is more rare, about once in 10,000 animals or less. The structure of TE itself is variable: regions within it may be lost, genes located adjacent to the site of insertion may transpose with the TE (hitch-hiking genes) or the TE may be duplicated.Possible mechanisms for transposition of the TE and its relation to dispersed gene families are discussed. Paro et al. (1983) have studied the end segments of the TE and isolated so-called FB elements (FB-NOF), which are responsible for its ability to transpose.A careful analysis of the many insertion points for TE will result in a more accurate correlation between the genetical and cytological maps for the two large autosomes of Drosophila melanogaster.  相似文献   

19.
Castro JP  Carareto CM 《Genetica》2004,121(2):107-118
The molecular mechanisms that control P element transposition and determine its tissue specificity remain incompletely understood, although much information has been compiled about this element in the last decade. This review summarizes the currently available information about P element transposition, P-M hybrid dysgenesis and P cytotype features, P element-encoded repressors, and regulation of transposition.  相似文献   

20.
It is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMPs) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild-type flies to survive much better in hyperoxia. In this study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with AMP overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS levels after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that 1) AMPs play an important role in tolerance to oxidant stress, 2) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and 3) this change in redox balance plays an important role in survival in hyperoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号