首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of photoperiod and steroid hormones on immune function were assessed in male and female deer mice (Peromyscus maniculatus). In experiment 1, male deer mice were castrated, castrated and given testosterone replacement, or sham-operated. Half of each experimental group were subsequently housed in either long (LD 16:8) or short days (LD 8:16) for 10 weeks. Short-day deer mice underwent reproductive regression and displayed elevated lymphocyte proliferation in response to the T-cell mitogen concanavalin A, as compared to long-day mice. In experiment 2, female deer mice were ovariectomized, ovariectomized and given estrogen replacement, or sham-operated. Animals from each of these experimental groups were subsequently housed in either LD 16:8 or LD 8:16 for 10 weeks. Short-day deer mice underwent reproductive regression and displayed reduced serum estradiol concentrations and elevated lymphocyte proliferation in response to concanavalin A, as compared to long-day mice. Surgical manipulation had no effect on lymphocyte proliferation in either male or female deer mice. Neither photoperiod nor surgical manipulation affected serum corticosterone concentrations. These results confirm that both male and female deer mice housed in short days enhance immune function relative to long-day animals. Additionally, short-day elevation in splenocyte proliferation appears to be independent of the influence of steroid hormones in this species. Accepted: 17 April 1998  相似文献   

2.
The content of estradiol and testosterone cytosolic and nuclear receptors has been studied in the pituitary body of adult male rats gonadectomized on day 1-3 after birth (long-term castrates) or in adulthood (short-term castrates). Intact male rats and long- and short-term castrates had the same level of cytosolic and nuclear estrogen receptors. The number of cytoplasmic and nuclear testosterone-binding sites was identical in the pituitary body of adult intact mice and long-term castrates. Contrastingly, the concentrations of androgen cytosolic and nuclear receptors were significantly lower in neonatally castrated males compared to intact adult animals. The results obtained indicate that nuclear testosterone receptors in the pituitary body mediate negative feedback effect of androgen on the release of luteinizing hormone and that the formation of thin mechanism occurs within the first days of life.  相似文献   

3.
In this study, the authors asked whether pinealectomy or temporary exposure to a stimulatory photoperiod affects the timing of spontaneous testicular recrudescence in adult Siberian hamsters chronically exposed to short days (9:15 light:dark). In Experiment 1, hamsters were pinealectomized after 6, 9, or 12 weeks in short days. Pinealectomy after 9 or 12 weeks did not affect the timing of spontaneous gonadal growth (27.7 +/- 1.9 and 25.4 +/- 1.3 weeks, respectively) compared to sham-operated controls (28.6 +/- 0.9 weeks). Enlarged testes occurred earlier in animals that were pinealectomized after 6 weeks in short days (21.8 +/- 2.1 weeks). In Experiment 2, adult hamsters were exposed to short days for 9 weeks, transferred to long days (16:8 light:dark) for 4 weeks, and then returned to short days for 23 additional weeks. Although long-day interruption caused gonadal growth in 15 out of 19 hamsters, the temporary long-day exposure did not affect the timing of spontaneous gonadal growth following return to short days (28.2 +/- 0.9 weeks) in 10 of the 15, relative to the timing observed in control hamsters continuously maintained in short days (28.2 +/- 1.1 weeks). Four out of 19 hamsters did not show gonadal growth following long-day exposure. Spontaneous gonadal growth in these hamsters (28.0 +/- 1.4 weeks) also occurred at the same time as controls. The remaining 5 hamsters exhibited enlarged testes following long-day exposure (12.0 +/- 0.0 weeks) but were refractory to the second short-day exposure. All hamsters exhibited entrainment of wheel-running activity following the change in photoperiod. A final group of 13 animals were pinealectomized before long-day transfer. They exhibited gonadal growth (at 17.2 +/- 0.8 weeks) but failed to regress a second time when returned to short days. The timing of gonadal growth in these animals was delayed relative to the sham-operated hamsters temporarily transferred to long days (Experiment 2) but accelerated relative to the hamsters pinealectomized at 9 weeks, which remained continuously in short days (Experiment 1). The results of both experiments suggest that a pineal-independent process mediates the timing of spontaneous gonadal growth in Siberian hamsters chronically exposed to a short-day photoperiod.  相似文献   

4.
Siberian hamsters (Phodopus sungorus) rely on photoperiod to coordinate seasonally appropriate changes in physiology, including immune function. Immunity is regulated, in part, by the sympathetic nervous system (SNS), although the precise role of the SNS in regulating photoperiodic changes in immunity remains unspecified. The goal of the present study was to examine the contributions of norepinephrine (NE), the predominant neurotransmitter of the SNS, to photoperiodic changes in lymphocyte proliferation. In experiment 1, animals were maintained in long [16:8-h light-dark cycle (16:8 LD)] or short days (8:16 LD) for 10 wk, and splenic NE content was determined. In experiment 2, in vitro splenocyte proliferation in response to mitogenic stimulation (concanavalin A) was assessed in spleen cell suspensions taken from long- or short-day hamsters in which varying concentrations of NE were added to the cultures. In experiment 3, splenocyte proliferation was examined in the presence of NE and selective alpha- and beta-noradrenergic receptor antagonists (phenoxybenzamine and propranolol, respectively) in vitro. Short-day animals had increased splenic NE content compared with long-day animals. Long-day animals had higher proliferation compared with short-day animals independent of NE. NE (1 microM) further suppressed splenocyte proliferation in short but not long days. Last, NE-induced suppression of proliferation in short-day hamsters was blocked by propranolol but not phenoxybenzamine. The present results suggest that NE plays a role in photoperiodic changes in lymphocyte proliferation. Additionally, the data suggest that the effects of NE on proliferation are specific to activation of beta-adrenergic receptors located on splenic tissue. Collectively, these results provide further support that photoperiodic changes in immunity are influenced by changes in SNS activity.  相似文献   

5.
Pinealectomized female hamsters (Mesocricetus auratus) housed in a short-day photoperiod were ovariectomized and tested for hormone-induced sexual receptivity in order to investigate the role of the pineal gland in the control of behavioral sensitivity to exogenous ovarian steroid hormones (Experiment 1). Behavioral sensitivity to hormones was further investigated in females maintained in a long-day photoperiod and rendered acyclic by daily administration of exogenous melatonin (Experiment 2). Female aggressive behavior was also monitored in all tests. Pinealectomy did not affect the reduced behavioral sensitivity to exogenous estrogen (E) induced by short days. These animals were also partially refractory to the effects of E when combined with low doses of progesterone. In addition, although melatonin administration mimicked the effects of short days on estrous cyclicity, the expression of hormone-dependent behaviors in these animals resembled the pattern displayed by control animals kept in long days. Thus, these findings suggest that the pineal gland plays a negligible role in the photoperiodic modulation of hormone-dependent sociosexual behaviors in female hamsters.  相似文献   

6.
It has been suggested that changes in endogenous glutamatergic stimulation of secretion of luteinizing hormone (LH) induced by photoperiod play a role in regulating seasonal cycles of reproductive activity. The aim of this study was to test the hypothesis that the glutamatergic control of the secretion of LH in the male Syrian hamster is sensitive to photoperiod, by determining whether the glutamate agonist N-methyl-D-aspartate (NMDA) could stimulate LH secretion in this species and, if so, to determine whether the response varied among animals exposed to different daylengths. In the first experiment, adult male hamsters were housed in either short day (8 h light: 16 h dark) for 6 weeks to induce testicular regression, or long days (16 h light: 8 h dark) to maintain testicular function, and the effects of systemic administration of NMDA on serum LH concentrations were determined. In the short-day hamsters, all s.c. doses of NMDA (25-75 mg kg-1 body weight) produced a robust rise in serum LH concentrations within 15 min. In the long-day hamsters, basal LH concentrations were higher than in short-day hamsters, but only the highest dose of NMDA produced a significant increase in LH concentrations, and the magnitude of this increment was less than those observed in short days. In hamsters in long days, the low doses of NMDA that did not significantly alter LH concentrations nevertheless significantly suppressed serum prolactin concentrations, demonstrating the efficacy of the drug. In hamsters in short days, serum prolactin concentrations were at the limit of detection of the assay, so no inhibitory effect of NMDA on prolactin secretion could be determined on this photoperiod. In the second experiment, the effects of a fixed dose of NMDA (50 mg kg-1 body weight) was tested at intervals in hamsters exposed to short days for a prolonged period such that their testes initially regressed, but then became scotorefractory and testicular recrudescence occurred. After 6 and 12 weeks in short days, NMDA stimulated LH secretion. However, after 24 weeks in short days when testicular recrudescence was complete, the response to NMDA was lost. A third experiment determined whether the reduced response to NMDA in hamsters on long days relative to those in short days might result from higher concentrations of circulating testosterone. Hamsters in long days were castrated to remove the influence of gonadal feedback, and the response to NMDA tested 3 weeks later when endogenous LH concentrations had risen to levels characteristic of the chronically castrated condition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The Siberian hamster, Phodopus sungorus, breeds seasonally. In the laboratory, seasonal breeding can be controlled by photoperiod, which affects the duration of nightly melatonin secretion. Winterlike, short day lengths induce gonadal regression in adult animals, and pups born and maintained in short days undergo pubertal gonadal development later than animals born into long days. However, to date there have been no reports of gestational photoperiod affecting fetal development of reproductive systems. The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus (BC) and levator ani (LA), compose a sexually dimorphic, androgen-sensitive neuromuscular system involved in male reproduction. The SNB neuromuscular system was studied in male Siberian hamsters maintained from conception in short-day (8 h light, 16 h dark; 8L:16D) versus long-day (16L:8D) conditions. On the day of birth, and at postnatal (PN) days 2 and 18, the BC/LA muscles of hamsters gestated and raised in the short photoperiod were significantly reduced relative to those of their long-day counterparts. Testes weights were not significantly different between groups until day 18. Thus, photoperiod exposure during gestation and after birth affects perinatal development of the SNB system in this species, and these effects can be seen as early as the day of birth. Because photoperiod did not significantly affect testes weights until PN18, these results suggest that either perinatal photoperiod affects fetal androgen production without affecting testes weight or it influences BC/LA development independently from androgen.  相似文献   

8.
The aromatization hypothesis asserts that testosterone (T) must be aromatized to estradiol (E2) to activate copulatory behavior in the male rat. In support of this hypothesis, the aromatization inhibitor, ATD, has been found to suppress male sexual behavior in T-treated rats. In our experiment, we first replicated this finding by peripherally injecting ATD (15 mg/day) or propylene glycol into T-treated (two 10-mm Silastic capsules) or control castrated male rats. In a second experiment, we bilaterally implanted either ATD-filled or blank cannulae into the medial preoptic area (MPOA) of either T-treated or control castrated male rats. With this more local distribution of ATD, a lesser decline in sexual behavior was found, suggesting that other brain areas are involved in the neurohormonal activation of copulatory behavior in the male rat. To determine whether in vivo ATD interacts with androgen or estrogen receptors, we conducted cell nuclear androgen and estrogen receptor binding assays of hypothalamus, preoptic area, amygdala, and septum following treatment with the combinations of systemic T alone. ATD plus T, ATD alone, and blank control. In all four brain areas binding of T to androgen receptors was significantly decreased in the presence of ATD, suggesting that ATD may act both as an androgen receptor blocker and as an aromatization inhibitor. Competitive binding studies indicated that ATD competes in vitro for cytosol androgen receptors, thus substantiating the in vivo antiandrogenic effects of ATD. Cell nuclear estrogen receptor binding was not significantly increased by exposure to T in the physiological range. No agonistic properties of ATD were observed either behaviorally or biochemically. Thus, an alternative explanation for the inhibitory effects of ATD on male sexual behavior is that ATD prevents T from binding to androgen receptors.  相似文献   

9.
The effect of castration and steroid replacement on the intracellular partitioning of the androgen receptor in the brain of the male Syrian hamster was determined using immunocytochemistry. Androgen receptors were visualized using the PG-21 antibody (G. S. Prins) on 40-μm coronal brain sections from hamsters perfused with 4% paraformaldehyde with or without 0.4% glutaraldehyde. Control studies confirmed antibody specificity in gonad-intact and castrate males. In the normal adult male, androgen receptor immunocytochemistry reveals intense staining confined to the cell nucleus. Castration caused a gradual increase in cytoplasmic labelling within 2 weeks, accompanied by a reduction in nuclear staining intensity in androgen receptor-containing neurons throughout the brain. Cytoplasmic androgen receptor staining was eliminated after treatment of orchidectomized males for only 8 h with exogenous testosterone. Likewise, long-term exposure to testosterone and dihydrotestosterone, a nonaromatizable androgen, maintained nuclear androgen receptor immunoreactivity. However, exposure to low physiologic concentrations of estrogen was not effective in this regard. In addition, we determined that nuclear androgen receptor immunoreactivity decreases in response to inhibitory short-day photoperiod, but without an increase in cytoplasmic immunostaining. This appears to be due to the decrease in androgen production by the testis, rather than a direct photoperiodic effect, because testosterone supplementation to short-day males restored the intensity of nuclear androgen receptor immuno-reactivity to levels comparable to those in the intact male. These findings are compatible with a new model for the intracellular localization of androgen receptors, in which a subset of unoccupied receptors is located in the cell cytoplasm in the absence of ligand. They further demonstrate the repartitioning of such cytoplasmic receptors, thereby confirming and extending previous observations using biochemical techniques on the regulation of neuronal androgen receptors. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
In mammals, removal of one testis results in compensatory testicular hypertrophy (CTH) of the remaining gonad. Although CTH is ubiquitous among juveniles of many species, laboratory rats, laboratory mice, and humans unilaterally castrated in adulthood fail to display CTH. We documented CTH in pre- and postpubertally hemi-castrated Syrian and Siberian hamsters and tested whether day length affects CTH in juvenile and adult Siberian hamsters. Robust CTH was evident in long-day hemi-castrates of both species and was preceded by increased serum FSH concentrations in juvenile Siberian hamsters. In sharp contrast, CTH was undetectable in short-day hemi-castrated Siberian hamsters for several months and only made its appearance with the development of neuroendocrine refractoriness to short day lengths; serum FSH concentrations of juveniles also did not increase above sham-castrate values until the onset of refractoriness. Long-day hemi-castrated Siberian hamsters with hypertrophied testes underwent complete gonadal regression after transfer to short days, albeit at a reduced rate for the first 3 weeks of treatment. Blood testosterone concentrations of adult hamsters did not differ between long-day hemicastrates and sham-castrates 9-12 weeks after surgery. We conclude that CTH is suppressed by short day lengths in Siberian hamsters at all ages and stages of reproductive development; in short day lengths, but not long day lengths, the remaining testis produces sufficient negative feedback inhibition to restrain FSH hypersecretion and prevent CTH.  相似文献   

11.
Preovulatory GnRH and LH surges depend on activation of estrogen (E2)-inducible progesterone receptors (PGRs) in the preoptic area (POA). Surges do not occur in males, or in perinatally androgenized females. We sought to determine whether prenatal androgen exposure suppresses basal or E2-induced Pgr mRNA expression or E2-induced LH surges (or both) in adulthood, and whether any such effects may be mediated by androgen receptor activation. We also assessed whether prenatal androgens alter subsequent GnRH pulsatility. Pregnant rats received testosterone or vehicle daily on Embryonic Days 16-19. POA-hypothalamic tissues were obtained in adulthood for PgrA and PgrB (PgrA+B) mRNA analysis. Females that had prenatal exposure to testosterone (pT) displayed reduced PgrA+B mRNA levels (P < 0.01) compared with those that had prenatal exposure to vehicle (pV). Additional pregnant animals were treated with vehicle or testosterone, or with 5alpha-dihydrotestosterone (DHT). In adult ovariectomized offspring, estradiol benzoate produced a 2-fold increase (P < 0.05) in PgrA+B expression in the POA of pV females, but not in pT females or those that had prenatal exposure to DHT (pDHT). Prenatal testosterone and DHT exposure also prevented estradiol benzoate-induced LH surges observed in pV rats. Blood sampling of ovariectomized rats revealed increased LH pulse frequency in pDHT versus pV females (P < 0.05). Our findings support the hypothesis that prenatal androgen receptor activation can contribute to the permanent defeminization of the GnRH neurosecretory system, rendering it incapable of initiating GnRH surges, while accelerating basal GnRH pulse generator activity in adulthood. We propose that the effects of prenatal androgen receptor activation on GnRH neurosecretion are mediated in part via permanent impairment of E2-induced PgrA+B gene expression in the POA.  相似文献   

12.
In a previous study, high nuclear estrogen receptor concentrations in the preoptic area (POA) were found on Day 16 of pregnancy to prime females to respond to a subsequent low dose of estradiol benzoate (EB) after hysterectomy-ovariectomy by exhibiting maternal behavior in 48 hr. Receptor concentrations in the POA were found to be higher than those in the hypothalamus (HYP). The present study investigated when nuclear estrogen receptors increase during pregnancy in POA and when the difference in receptor concentrations between POA and HYP occurs. An attempt was made to reproduce these pregnancy changes with a 16-day treatment of estrogen and progesterone in ovariectomized (OVX), nulliparous rats. In Experiment 1, we measured cytosol and nuclear estrogen receptor concentrations in the POA and HYP of female rats during pregnancy. Nuclear receptor concentrations in the POA increased beginning on Day 10, increased again on Day 16, and continued at this high level for the remainder of pregnancy. Nuclear estrogen receptor concentrations in the HYP remained at a lower level throughout most of pregnancy until Day 22 when they increased significantly. In Experiment 2, we tested the maternal behavior and measured estrogen receptor concentrations in OVX, steroid-primed, nulliparous rats after hysterectomy (H) and EB treatment. While 90% of estradiol (E) + progesterone (P)-primed females displayed short-latency maternal behavior 48 hr after H and EB treatment, 46% of E + vehicle (V)-treated controls were maternal. At 0 hr (prior to H and EB treatment), there was a significantly larger nuclear receptor accumulation in the POA but significantly attenuated receptor binding in the HYP. P treatment significantly affected cytosol and nuclear estrogen receptor dynamics. Differences in nuclear estrogen receptor concentrations were shown to be based on the number of available binding sites and not to changes in receptor affinity for estradiol.  相似文献   

13.
Siberian hamsters are photoperiodic rodents that typically exhibit several physiological changes when exposed to a short-day photoperiod. However, development of the winter phenotype in short days is largely conditional on prior photoperiod history: Hamsters that have been reared in an exceptionally long day length (18 L) do not usually exhibit the winter phenotype after transfer to short days, whereas animals reared under "moderately" long days (16 L) are more variable in responsiveness to subsequent short-day exposure, with 20% to 30% generally failing to exhibit winter-type responses. Hamsters reared exclusively in an "intermediate" day length (14 L) are almost uniformly responsive to short photoperiod. In the present study, the authors examine the influence of photoperiod history on short-day responsiveness in a breeding line of hamsters that has been subjected to artificial selection for resistance to the effects of short days. The results demonstrate that photoperiod history is an important determinant of short-day responsiveness in both random-bred (UNS) hamsters and animals artificially selected and bred for nonresponsiveness to short photoperiod (PNR). The PNR hamsters have a reduced requirement for long-day exposure to evoke a state of unresponsiveness to short days. The results are discussed in relation to possible significance for the origin of population and species differences in photoperiod responsiveness.  相似文献   

14.
The Siberian hamster, Phodopus sungorus, breeds seasonally. In the laboratory, the seasonal breeding can be controlled by photoperiod, which affects the durations of nightly melatonin secretions. Winterlike short day lengths induce gonadal regression in adult animals, and pups born and maintained in short days undergo gonadal development much later than animals born into long days. The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus (BC) and levator ani (LA), comprise a sexually dimorphic, androgen-sensitive neuromuscular system involved in male reproduction. The SNB neuromuscular system was studied in male Siberian hamsters maintained from conception in short-day (8:16 h light/dark cycle) versus long-day (16:8 h light/dark cycle) conditions. At 40–47 days of age, development of three components of the SNB neuromuscular system were all significantly delayed in hamsters raised in the short photoperiod: BC/LA muscle weight, the size of SNB motoneuronal somata, and the area of the neuromuscular junctions at the BC/LA muscles of short-day hamsters were each significantly reduced relative to those of long-day counterparts. Thus, development of the SNB reproductive system is delayed under short day lengths in this species. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 355–360, 1998  相似文献   

15.
LH concentrations were measured in serum collected at 10-min intervals from chronically ovariectomized female Syrian hamsters that had been maintained for 9 wk in stimulatory (long) or inhibitory (short) photoperiods. Short days reduced the number of detectable LH pulses during both the morning and the afternoon. Most short-day hamsters experienced a gradual afternoon rise in serum LH concentrations; this rise was not composed of multiple pulses. In separate groups of similarly treated hamsters, pituitary LH-beta mRNA abundance was significantly reduced by short-day exposure at both times of day even though serum LH concentrations rose in the afternoon. Estradiol treatment induced an afternoon surge of serum LH in both photoperiods, and eliminated the effect of photoperiod on LH-beta mRNA abundance in the afternoon. Serum prolactin (PRL) concentrations were not consistently influenced by day length in castrated hamsters with or without estrogen treatment, but PRL mRNA abundance was significantly suppressed by short-day exposure in all groups. The results indicate that day length exerts profound steroid-independent effects upon hypophyseal gene expression, and that the regulation of LH-beta mRNA abundance may be due to photoperiodic control of the neural GnRH pulse generator.  相似文献   

16.
Brain aromatase cytochrome P450 converts androgens to estrogens that play a critical role in the development of sexually dimorphic neural structures, the modulation of neuroendocrine function(s), and the regulation of sexual behavior. We characterized the influence of surgical castration on brain aromatase in Norway Brown and Wistar adult rats and compared their responses to Sprague-Dawley rats that were surgically or biochemically castrated (with flutamide, a known androgen receptor blocker). Aromata enzyme activity was measured by the tritiated water release assay in the medial basal hypothalmus/preoptic area (MBH/POA) and amygdala brain regions. The present results demonstrate that independent of the rat strain examined, MBH/POA aromatase is regulated by androgens (in Sprague-Dawley, Norway Brown and Wistar males). However, intact Wistar animals displayed significantly higher MBH/POA aromatase levels compared to Sprague-Dawley control values. Conversely, in the amygdala region, there was an apparent lack of androgen hormone action upon aromatase enzyme activity in some of the rat strains tested. The importance of brain aromatase regulating estrogen biosynthesis and influencing brain development and function is covered.  相似文献   

17.
Many nontropical rodent species rely on photoperiod as a primary cue to coordinate seasonally appropriate changes in physiology and behavior. Among these changes, some species of rodents demonstrate increased aggression in short, "winter-like" compared with long "summer-like" day lengths. The precise neuroendocrine mechanisms mediating changes in aggression, however, remain largely unknown. The goal of the present study was to examine the effects of photoperiod and exogenous melatonin on resident-intruder aggression in male Syrian hamsters (Mesocricetus auratus). In Experiment 1, male Syrian hamsters were housed in long (LD 14:10) or short (LD 10:14) days for 10 weeks. In Experiment 2, hamsters were housed in long days and half of the animals were given daily subcutaneous melatonin injections (15 microg/day in 0.1 ml saline) 2 h before lights out for 10 consecutive days to simulate a short-day pattern of melatonin secretion, while the remaining animals received injections of the vehicle alone. Animals in both experiments were then tested using a resident-intruder model of aggression and the number of attacks, duration of attacks, and latency to initial attack were recorded. In Experiment 1, short-day hamsters underwent gonadal regression and displayed increased aggression compared with long-day animals. In Experiment 2, melatonin treatment also increased aggression compared with control hamsters without affecting circulating testosterone. Collectively, the results of the present study demonstrate that exposure to short days or short day-like patterns of melatonin increase aggression in male Syrian hamsters. In addition, these results suggest that photoperiodic changes in aggression provide an important, ecologically relevant model with which to study the neuroendocrine mechanisms underlying aggression in rodents.  相似文献   

18.
Among the suite of adaptations displayed by seasonally-breeding rodents, individuals of most species display reproductive regression and concomitant decreases in gonadal steroids during the winter. In addition, some species display increased aggression in short "winter-like" days compared with long "summer-like" day lengths. For example, male Syrian and Siberian hamsters held in short days express heightened levels of aggression that are independent of gonadal steroids. Virtually nothing is known, however, regarding seasonal aggression in female Siberian hamsters (Phodopus sungorus). Studies were undertaken to determine female levels of aggression in long and short days as well as the role of gonadal steroids in mediating this behavior. In Experiment 1, females were housed in long or short days for 10 weeks and resident-intruder aggression was assessed. Prior to testing, estrous cycle stages were determined by vaginal cytology and females were tested during both Diestrus I and Proestrus. In Experiment 2, hormone levels were experimentally manipulated; long-day females were ovariectomized (OVx) or given sham surgeries whereas short-day females were implanted with capsules containing 17beta-estradiol (E(2)) or Progesterone (P). In Experiment 3, both long- and short-day females were ovariectomized and implanted with either an exogenous E(2) or blank capsule, or given a sham surgery. Short-day hamsters displayed increased aggression relative to long-day females. Aggression was not affected by estrous stage. There was no difference in aggression between long-day OVx and sham animals. Furthermore, neither exogenous E(2) nor P had any significant effect on aggression. These results support previous findings of increased non-breeding aggression and suggest that short-day aggression is not likely mediated by circulating levels of gonadal steroids. These results also suggest that the endocrine regulation of seasonal aggression may be similar between the sexes.  相似文献   

19.
We examined the involvement of neural mechanisms within the suprachiasmatic nucleus (SCN) and periventricular area (PVA), and the role of prolactin (Prl) in control of endocrine function in short day-exposed Syrian hamsters. Hamsters bearing lesions of the SCN or PVA, hamsters implanted with an anterior pituitary under the kidney capsule to provide sustained Prl levels, and sham-operated hamsters were exposed to either 14L:10D or 8L:16D. After 9 wk, hamsters were sacrificed, and their testes and pituitaries were studied in vitro to assess their secretory capacity. SCN lesions and large periventricular lesions impinging on the paraventricular nucleus prevented testicular regression during short-day exposure. Small periventricular lesions and pituitary implants did not prevent gonadal regression in hamsters exposed to short days. Testis weights were positively correlated with basal and luteinizing hormone (LH)-stimulated androgen production in the control and lesioned groups; pituitary implants prevented the decline in androgen production in vitro in gonadally regressed animals. The relative in vitro pituitary response to gonadotropin-releasing hormone (GnRH) stimulation in control and lesioned groups was not reduced by short-day exposure. These data indicate that either axons coursing dorsally from the SCN or extra-SCN structures in the periventricular/paraventricular area are necessary for testicular regression in short photoperiods.  相似文献   

20.
Social dominance and agonistic behavior play important roles in animal societies. Melatonin and testosterone are closely related to social dominance and agonistic behavior in rodents, but interactions between both of them remain unknown. In this study we investigated the effects of testosterone and melatonin by manipulating photoperiod and castration on social dominance and agonistic behavior in male Tscheskia triton. Castration significantly decreases social dominance of both short- and long-day males, suggesting that testosterone benefits social dominance of males in both breeding and non-breeding seasons. In intact conditions, long-day males tended to dominate short-day males, suggesting that the effect of testosterone on social dominance was a little stronger than melatonin. However, castrated short-day males became dominant over their castrated long-day opponents meaning that high melatonin levels obviously benefit social dominance in males. Hormone implantation indicated that testosterone had no effect on non-breeding condition, but that melatonin was important during the breeding season. Our results indicate that both testosterone and melatonin are important in determining social dominance in male hamsters, and the effect of testosterone appears to be stronger than melatonin. Testosterone is responsible for aggression and social dominance in male hamsters during the breeding season, while melatonin regulates behavior during non-breeding, probably due to the different seasonal secretory patterns of the hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号