首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
胆固醇逆向转运(reverse cholesterol transport,RCT)是指胆固醇从外周组织细胞流出,通过高密度脂蛋白转运至肝脏进行代谢转变的过程,是维持细胞脂质稳态的重要机制。RCT相关基因的功能障碍是动脉粥样硬化脂质沉积、慢性炎症和泡沫细胞形成的主要病因,已成为抗动脉粥样硬化的主要靶点。该文就近年来关于胆固醇逆向转运的调节和定量分析在动脉粥样硬化中的最新研究进展作一综述。  相似文献   

2.
前β_1-HDL与细胞HDL受体结合活性的研究   总被引:1,自引:0,他引:1  
研究发现肝细胞、动脉平滑肌细胞、巨噬细胞、成纤维细胞、内皮细胞以及卵巢组织等的细胞膜上均存在可特异性结合高密度脂蛋白 (high densitylipoprotein,HDL)的受体[1~ 3] .肝细胞 HDL受体介导胆固醇由 HDL 流入细胞转化清除 ,肝外细胞HDL受体则介导细胞内过量胆固醇流出 [4 ,5] .前 β1-HDL是外周细胞流出胆固醇的最初接受体 [6] ,而 α-HDL主要作为细胞流出胆固醇酯化及转运至肝脏清除的载体[4 ] .胆固醇逆向转运 (reverse cholesteroltransport,RCT)的过程实质上就是 HDL由前β1-HDL到 α- HDL递变成熟的代谢过程 [4 ] ,因…  相似文献   

3.
卵磷脂胆固醇酰基转移酶(Lecithin cholesterol acyltransferase,LCAT)催化血浆中绝大多数胆固醇的酯化—外周组织胆固醇逆向转运(Reverse cholesterol transportation,RCT)到肝脏进一步分解的关键步骤,同时调节血浆高密度胎蛋白(high density lipoprotein,HDL)等脂蛋白的成熟与代谢。对其基因多态性和突变的研究表明:LCAT在RCT、脂代谢和动脉粥样硬化发生发展中起重要作用,有可能作为预防或治疗动脉粥样硬化的靶基因。  相似文献   

4.
过多的胆固醇沉积在动脉壁对机体极为有害,可以引起动脉粥样硬化甚至心血管疾病.而胆固醇逆转运(reverse cholesterol transport,RCT)可以逆转此过程.传统的RCT是指胆固醇由外周组织转运回肝脏进行再循环或以胆汁酸的形式随粪便排出体外的过程,此过程受多种因子调控.近几年研究发现,胆固醇还可由血经过肠道直接分泌(transintestinal cholesterol efflux, TICE)通路随粪便排出体外,此过程对外界刺激更敏感.RCT已经成为防治动脉粥样硬化研究的新靶点,TICE有可能成为更有效的RCT调控通路.  相似文献   

5.
巨噬细胞胆固醇转运相关蛋白研究进展   总被引:3,自引:0,他引:3  
动脉粥样斑块中泡沫细胞的形成与巨噬细胞胆固醇的转运密切相关,巨噬细胞胆固醇转运是胆固醇逆转运中的一个重要过程,它可清除外周组织过多的胆固醇,对维持细胞内胆固醇稳定、延缓动脉粥样硬化的发生发展有着重要意义.这个过程涉及到许多转运相关蛋白的作用,如三磷酸腺苷结合盒转运体A1/G1、载脂蛋白A-Ⅰ、胆固醇脂转运蛋白、卵磷脂胆固醇酰基转移酶等.本文就巨噬细胞胆固醇转运过程中相关蛋白的作用做一综述,以期为动脉粥样硬化相关疾病的防治研究提供新的思路.  相似文献   

6.
调控胆固醇吸收的分子通路   总被引:1,自引:1,他引:0       下载免费PDF全文
邵翅  杨林 《生物信息学》2015,13(4):239-243
机体内的胆固醇失衡会引发多种疾病,如高胆固醇血症、心脑血管疾病等,而其平衡由胆固醇的合成、吸收、代谢和循环共同维持,其中胆固醇的吸收至关重要。胆固醇的吸收主要发生在小肠和近段空肠,受众多蛋白的调控。尼曼-匹克C1样蛋白1(NPC1L1)负责胆固醇的摄取;ATP结合盒转运蛋白(ABCG5/ABCG8)则抑制胆固醇的吸收,酰基辅酶A-胆固醇酰基转移酶(ACAT)催化胆固醇脂化提高胆固醇吸收;ATP结合盒转运蛋白A1(ABCA1)负责外周组织胆固醇的转运,而这些蛋白又受到其他调控因子的影响。解析胆固醇吸收的分子通路对胆固醇失衡相关疾病的预防及治疗具有重大指导意义。因此,本文就调控胆固醇吸收的分子通路进行综述。  相似文献   

7.
血浆载脂蛋白A-Ⅰ(apoA-Ⅰ)的水平与动脉粥样硬化(atherosclerosis,AS)性心血管疾病的风险呈负相关.ApoA-Ⅰ经载脂形成高密度脂蛋白(HDL),HDL通过促进胆固醇逆向转运(RCT),使细胞内的多余胆固醇流出.α螺旋是apoA-Ⅰ载脂的主要结构,在apoA-Ⅰ参与的胆固醇流出中具有重要作用.模拟α螺旋建立的apoA-Ⅰ模拟肽能通过不同方式发挥抗AS的作用.本文就α螺旋在胆固醇流出中的作用作一综述,以便进一步探索apoA-Ⅰ的结构对胆固醇流出的影响,为以apoA-Ⅰ为靶点防治AS提供理论基础.  相似文献   

8.
胆固醇逆向转运的分子机制   总被引:9,自引:0,他引:9  
Wu XW  Fu MD 《生理科学进展》1998,29(4):361-363
胆固醇逆向转运是周围细胞胆固醇转运至肝脏转化、清除的重要生理过程,它在维持机体胆固醇代谢平衡和对抗动脉粥样硬化发生及发展中起重要作用。研究证实胆固醇逆向转运直是高密度脂蛋白在多种生物活性分子参与下,由新生前β-HDL到成熟α-HDL递变的胆固醇转运及代谢过程。  相似文献   

9.
氧化修饰HDL对培养人主动脉平滑肌细胞胆固醇流出的影响   总被引:1,自引:0,他引:1  
大量研究显示,高密度脂蛋白(highdensitylipoprotein,HDL)具有抗动脉粥样硬化(atherosclerosis,AS)作用.这是由于HDL能够促进外周组织如血管壁内皮细胞、平滑肌细胞(smoothmusclecell,SMC)及巨噬细胞储集的胆固醇流出,并将其转移到肝脏通过胆汁分泌而排出体外[1],这一过程...  相似文献   

10.
胆固醇流出是指外周组织和细胞中过多的游离胆固醇流出到载脂蛋白A-I(apolipoprotein A-I,apoA-I)或高密度脂蛋白(high-density lipoproteins,HDL)的过程.高密度脂蛋白介导的外周细胞胆固醇流出在胆固醇逆向转运(reverse cholesterol transport,R...  相似文献   

11.
As most of peripheral cells are not able to catabolize cholesterol, the transport of cholesterol excess from peripheral tissues back to the liver, namely "reverse cholesterol transport", is the only way by which cholesterol homeostasis is maintained in vivo. Reverse cholesterol transport pathway can be divided in three major steps: 1) uptake of cellular cholesterol by the high density lipoproteins (HDL), 2) esterification of HDL cholesterol by the lecithin: cholesterol acyltransferase and 3) captation of HDL cholesteryl esters by the liver where cholesterol can be metabolized and excreted in the bile. In several species, including man, cholesteryl esters in HDL can also follow an alternative pathway which consists in their transfer from HDL to very low density (VLDL) and low density (LDL) lipoproteins. The transfer of cholesteryl esters to LDL, catalyzed by the Cholesteryl Ester Transfer Protein (CETP), might affect either favorably or unfavorably the reverse cholesterol transport pathway, depending on whether LDL are finally taken up by the liver or by peripheral tissues, respectively. In order to understand precisely the implication of CETP in reverse cholesterol transport, it is essential to determine its role in HDL metabolism, to know the potential regulation of its activity and to identify the mechanism by which it interacts with lipoprotein substrates. Results from recent studies have demonstrated that CETP can promote the size redistribution of HDL particles. This may be an important process in the reverse cholesterol transport pathway as HDL particles with various sizes have been shown to differ in their ability to promote cholesterol efflux from peripheral cells and to interact with lecithin: cholesterol acyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The binding of high density lipoprotein (HDL) to scavenger receptor BI (SR-BI) is responsible for whole-body cholesterol disposal via reverse cholesterol transport. The extracellular domain of SR-BI is required for HDL binding and selective uptake of HDL-cholesterol. We identified six highly hydrophobic regions in this domain that may be important for receptor activity and performed site-directed mutagenesis to investigate the importance of these regions in SR-BI-mediated cholesterol transport. Non-conservative mutation of the regions encompassing V67, L140/L142, V164 or V221 reduced hydrophobicity and impaired the ability of SR-BI to bind HDL, mediate selective uptake of HDL-cholesterol, promote cholesterol efflux, and enlarge the cholesterol oxidase-sensitive pool of membrane free cholesterol. In contrast, conservative mutations at V67, V164 or V221 did not affect the hydrophobicity or these cholesterol transport activities. We conclude that the hydrophobicity of N-terminal extracellular regions of SR-BI is critical for cholesterol transport, possibly by mediating receptor-ligand and/or receptor-membrane interactions.  相似文献   

13.
Endosome to Golgi transport of ricin is regulated by cholesterol   总被引:6,自引:0,他引:6       下载免费PDF全文
We have here studied the role of cholesterol in transport of ricin from endosomes to the Golgi apparatus. Ricin is endocytosed even when cells are depleted for cholesterol by using methyl-beta-cyclodextrin (m beta CD). However, as here shown, the intracellular transport of ricin from endosomes to the Golgi apparatus, measured by quantifying sulfation of a modified ricin molecule, is strongly inhibited when the cholesterol content of the cell is reduced. On the other hand, increasing the level of cholesterol by treating cells with mbetaCD saturated with cholesterol (m beta CD/chol) reduced the intracellular transport of ricin to the Golgi apparatus even more strongly. The intracellular transport routes affected include both Rab9-independent and Rab9-dependent pathways to the Golgi apparatus, since both sulfation of ricin after induced expression of mutant Rab9 (mRab9) to inhibit late endosome to Golgi transport and sulfation of a modified mannose 6-phosphate receptor (M6PR) were inhibited after removal or addition of cholesterol. Furthermore, the structure of the Golgi apparatus was affected by increased levels of cholesterol, as visualized by pronounced vesiculation and formation of smaller stacks. Thus, our results indicate that transport of ricin from endosomes to the Golgi apparatus is influenced by the cholesterol content of the cell.  相似文献   

14.
Abstract— In the chick optic system cholesterol is axonally transported in two phases which appear to take their cholesterol from different cellular pools. The intraocular injection of radioactire cholesterol results in the specific labelling of the slow phase which carries cholesterol in the unesterificd form and appears to move at the same rate as the slow phase of protein transport (R ostas et al. , 1975). The intraocular injection of radioactive mevalonic acid, a metabolic precursor of cholesterol, results in the preferential labelling of a more rapid phase of axonal transport which also carries cholesterol in the unesterified form and is first detected at the optic tectum 10 h after the injection. It is likely that this rapid phase travels at the same rate as the rapid phase of protein transport and that the delayed arrival at the tectum is due to a lag time in the retina caused by the synthesis of cholesterol and its packaging for transport. Because the individual pools for the two transport phases can be selectively labelled, the retina and optic nerve provide a unique model system in which the metabolic turnover, intracellular compartmentalization and intracellular transport of cholesterol can be studied.  相似文献   

15.
16.
Apolipoprotein AI (apoAI)-mediated cholesterol efflux is a process by which cells export excess cellular cholesterol to apoAI to form high density lipoprotein. ATP-binding cassette protein A1 (ABCA1) has recently been identified as the key regulator of this process. The pathways of intracellular cholesterol transport during efflux are largely unknown nor is the molecular mechanism by which ABCA1 governs cholesterol efflux well understood. Here, we report that, in both macrophages and fibroblasts, the secretory vesicular transport changes in response to apoAI-mediated cholesterol efflux. Vesicular transport from the Golgi to the plasma membrane increased 2-fold during efflux. This increase in vesicular transport during efflux was observed in both raft-poor and raft-rich vesicle populations originated from the Golgi. Importantly, enhanced vesicular transport in response to apoAI is absent in Tangier fibroblasts, a cell type with deficient cholesterol efflux due to functional ABCA1 mutations. These findings are consistent with an efflux model whereby cholesterol is transported from the storage site to the plasma membrane via the Golgi. ABCA1 may influence cholesterol efflux in part by enhancing vesicular trafficking from the Golgi to the plasma membrane.  相似文献   

17.
The review highlights the membrane aspect of cholesterol efflux from cell membranes to high density lipoproteins (HDL), an initial stage of reverse cholesterol transport to liver. In addition to traditional viewpoints considering cholesterol transport as the step of sequential lipoprotein transformation, which involves blood plasma apoproteins and proteins transporters, employment of proteomic approaches has shown the active role of cell plasma membranes as cholesterol donors and plasma membrane bound proteins in cholesterol transport. These include ATP-binding ABC-A1 transporter and membrane receptor SR-B1. There is experimental and clinical evidence that impairment of genes encoding these proteins cause impairments of reverse cholesterol transport (e.g. Tangier disease and genetic manipulations with experimental animals.) Although precise mechanism involving these membrane proteins remains unknown it is suggested that ABC-AI with free plasma apoA1 facilitates the efflux of membrane phospholipids and formation of their complex with apoAI. This complex accepts membrane cholesterol, with simultaneous formation of a full HDL particle. In certain cells there is correlation between cholesterol efflux into HDL and expression of SR-BI, which reversibly binds to HDL. This receptor protein may influence molecular organization of membrane phospholipids and cholesterol, facilitating cholesterol efflux. The review also deals with properties of ABC-A1 and SR-B1, putative mechanisms of their effects, the role of these proteins in reverse cholesterol transport and their functional coupling to the phospholipid matrix of biomembranes.  相似文献   

18.
We previously demonstrated that a caveolin-chaperone complex transports newly synthesized cholesterol from the endoplasmic reticulum through the cytoplasm to caveolae. Caveolin-1 has a 33-amino acid hydrophobic domain and three sites of palmitoylation in proximity to the hydrophobic domain. In the present study, we hypothesized that palmitoylation of caveolin-1 is necessary for binding of cholesterol, formation of a caveolin-chaperone transport complex, and rapid, direct transport of cholesterol to caveolae. To test this hypothesis, four caveolin-1 constructs were generated that substituted an alanine for a cysteine at position 133, 143, or 156 or all three sites (triple mutant). These mutated caveolins and wild type caveolin-1 were stably expressed in the lymphoid cell line, L1210-JF, which does not express caveolin-1, does not form a caveolin-chaperone complex, and does not transport newly synthesized cholesterol to caveolae. All of the caveolins were expressed and the proteins localized to plasma membrane caveolae. Wild type caveolin-1 and mutant 133 assembled into complete transport complexes and rapidly (10-20 min) transported cholesterol to caveolae. Caveolin mutants 143 and 156 did not assemble into complete transport complexes, weakly associated with cholesterol, and transported small amounts of cholesterol to caveolae. The triple mutant did not assemble into complete transport complexes and did not associate with cholesterol. We conclude that palmitoylation of caveolin-1 at positions 143 and 156 is required for cholesterol binding and transport complex formation.  相似文献   

19.
Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号