首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
抗黏着斑激酶是一种非受体型酪氨酸蛋白激酶,在许多肿瘤的发生和发展过程中均有过表达。研究表明,作为细胞内重要的骨架蛋白和调节多种细胞信号通路的关键分子,黏着斑激酶在肿瘤发生、发展、迁移和侵袭的各个阶段都起着重要作用。因此,以黏着斑激酶作为抗肿瘤靶点开发其抑制剂的研究受到广泛关注。综述黏着斑激酶的结构与功能、它与肿瘤的关联及其小分子抑制剂的研究与开发。  相似文献   

2.
黏着斑激酶(focal adhesion kinase,FAK)是一种非受体型蛋白酪氨酸激酶,在肿瘤细胞的侵袭和转移中起着重要的作用。FAK是整合素介导的或生长因子受体诱导的调节细胞迁移的信号通路的关键组分。FAK通过与相关分子作用可以调节细胞骨架重构、胞外基质降解、细胞黏附更新以及质膜突出,进而参与肿瘤细胞的运动等多个过程,所以FAK与肿瘤发展的关系已经越来越受到重视。  相似文献   

3.
黏着斑激酶(focal adhesion kinase, FAK)是一种胞质非受体酪氨酸激酶。FAK和肿瘤密切相关,在多种癌细胞中高表达,促进癌细胞的发生、生长、存活、增殖、粘附、转移和侵袭以及血管生成等过程。肿瘤微环境包括肿瘤细胞、周围血管、免疫细胞、纤维母细胞、内皮细胞、信号分子和细胞外基质,它对癌症的发展和恶化具有重要作用。肿瘤细胞可以通过分泌细胞外信号影响微环境,使其有利于肿瘤生存和发展|肿瘤微环境中的基质细胞能通过产生趋化因子、基质降解酶和生长因子促进肿瘤侵袭和转移。本文综述肿瘤微环境在癌症发生发展过程中的作用及FAK在肿瘤微环境中的调控作用,为肿瘤疾病的治疗提供新思路。  相似文献   

4.
黏着斑激酶与细胞迁移   总被引:2,自引:0,他引:2  
细胞迁移过程始于细胞前端板状伪足的形成、外周黏附的建立、细胞体的收缩和尾部的解离.黏着斑激酶是一种非受体酪氨酸蛋白激酶,通过其激酶活性和"脚手架"的功能在细胞迁移的各个过程中发挥关键作用.现重点介绍黏着斑激酶介导的信号转导通路及其在调控细胞迁移方面的研究进展.  相似文献   

5.
黏着斑激酶(focal adhesion kinase,FAK)作为一种非受体蛋白酪氨酸激酶,因其与肿瘤间的密切联系而备受关注。多年研究发现,FAK在许多肿瘤中过表达,通过多条信号通路调控细胞侵袭、迁移、增殖及凋亡等,从而参与肿瘤的发生、发展进程。研究表明FAK可以作为肿瘤预后因子,是潜在的抗肿瘤治疗靶点。本文对FAK与肿瘤进程的关系作一综述,以期更好地认识FAK在肿瘤发生、发展过程中所起的作用,为相关研究者提供资料参考。  相似文献   

6.
目的 探讨牡荆苷(vitexin,Vitx)是否能通过促进黏着斑激酶(focal adhesion kinase,FAK)活化来对心肌缺血再灌注(ischemia/reperfusion,I/R)损伤的心肌细胞发挥保护作用.方法 将H9C2细胞分为对照组、缺氧/复氧(hypox-ia/reoxygenation,H/R...  相似文献   

7.
目的:探讨血管紧张素Ⅱ(AngⅡ)与黏着斑激酶(FAK)对人肺血管平滑肌细胞增生的影响。方法:采用免疫印迹方法测定了不同组别中FAK的表达,并采用MTT比色法,^3H—TdR掺入测定细胞增殖情况。结果:AngⅡ能促进细胞增殖。对细胞的影响呈现剂量依赖关系。结论:AngⅡ促进人肺动脉平滑肌细胞增殖,并促进FAK的表达,在肺血管结构的重构方面可能有着重要的病理生理学意义。  相似文献   

8.
整合素是一类由α和β两个亚基组成的异源二聚体单次跨膜细胞黏附分子,通过与其对应配体相互作用,介导细胞与细胞、细胞与胞外基质之间的黏附,同时可以将细胞外信号传递至胞内,并招募一系列胞内蛋白与整合素胞内段结合,在细胞膜上形成超分子结构,激活下游信号.整合素的活化进程伴随着其胞外结构域由折叠构象转变为伸展构象以及胞内结构域的...  相似文献   

9.
黏着斑激酶(focal adhesion kinase,FAK)是细胞内一种重要的信号转导分子,参与多条重要信号通路和多种细胞生物学行为的调控。该文结合当前的研究进展,总结了FAK通过其复杂的信号转导通路在细胞迁徙、增殖、抗凋亡方面的功能,并简要归纳了FAK与肿瘤之间的密切联系。  相似文献   

10.
粘附斑激酶(FAK)及其信号通路研究进展   总被引:3,自引:0,他引:3  
粘附斑激酶(focal adhesion kinase,FAK)是一类胞质非受体蛋白酪氨酸激酶,属于蛋白酪氨酸激酶(protein tyrosine kinase)超家族,因而也称为PTKⅡ.FAK在细胞信号转导中处于十分重要的位置,它是胞内外信号出入的中枢,介导多条信号通路.FAK可以整合来自整合素、生长因子以及机械刺激等的信号,激活胞内PI3K/Akt、Ras/MAPK等信号通路,调节细胞生长.FAK还与胚胎发育、肿瘤发生与迁移有关.  相似文献   

11.
Focal adhesion kinase (FAK) is critical for collagen expression but its regulation of collagen remodeling is not defined. We examined the role of FAK in the degradation and reorganization of fibrillar collagen. Compared with wild-type (WT) mouse embryonic fibroblasts, FAK null (FAK−/−) fibroblasts generated twofold (p < .0001) higher levels of ¾ collagen I fragment and expressed up to fivefold more membrane-type matrix metalloproteinase (MMP). When plated on stiff collagen substrates, compared with WT, FAK−/− cells were smaller (threefold reduced cell surface area; p < .0001) and produced fivefold fewer cell extensions (p < .0001) that were 40% shorter (p < .001). When cultured on soft collagen gels (stiffness of ~100 Pa) for 6–48 hr, cell spreading and cell extension formation were reduced by greater than twofold (p < .05 and p < .0001, respectively) while collagen compaction and alignment were reduced by approximately 30% (p < .0001) in FAK−/− cells. Similar results were found after treatment with PF573228, a FAK inhibitor. Reconstitution of FAK−/− cells with FAK mutants showed that compared with WT, cell extension formation was reduced twofold (p < .0001) in the absence of the kinase domain and sixfold (p < .0001) with a Y397F mutant. Enhanced collagen degradation was exhibited by the mutants (~threefold increase; p < .0001 of ¾ collagen fragments without kinase domain or Y397F mutant; p < .01). Compared with FAK+/+ cells, matrices produced by FAK−/− cells generated higher levels of β1 integrin activation (p < 0.05), extracellular-signal-regulated kinase (ERK) phosphorylation, and production of ¾ collagen I fragment by human gingival fibroblasts. Collectively these data indicate that (a) the kinase activity of FAK enhances collagen remodeling by tractional forces but inhibits collagen degradation by MMPs; (b) FAK influences the biological activity of fibroblast-secreted extracellular matrices, which in turn impacts β1 integrin and ERK signaling, and collagen degradation.  相似文献   

12.
Background  Focal adhesion kinase (FAK) is a ubiquitously expressed non-receptor tyrosine kinase involved in cancer progression and metastasis that is found overexpressed in a large number of tumors such as breast, colon, prostate, melanoma, head and neck, lung and ovary. Thus, FAK could be an attractive tumor associated antigen (TAA) for developing immunotherapy against a broad type of malignancies. In this study, we determined whether predicted T cell epitopes from FAK would be able to induce anti-tumor immune cellular responses. Methods  To validate FAK as a TAA recognized by CD4 helper T lymphocytes (HTL), we have combined the use of predictive peptide/MHC class II binding algorithms with in vitro vaccination of CD4 T lymphocytes from healthy individuals and melanoma patients. Results  Two synthetic peptides, FAK143–157 and FAK1,000–1,014, induced HTL responses that directly recognized FAK-expressing tumor cells and autologous dendritic cells pulsed with FAK-expressing tumor cell lysates in an HLA class II-restricted manner. Moreover, since the FAK peptides were recognized by melanoma patient’s CD4 T cells, this is indicative that T cell precursors reactive with FAK already exist in peripheral blood of these patients. Conclusions  Our results provide evidence that FAK functions as a TAA and describe peptide epitopes that may be used for designing T cell-based immunotherapy for FAK-expressing cancers, which could be used in combination with newly developed FAK inhibitors.  相似文献   

13.
Apoptosis plays an important role in cellular processes such as development, differentiation, and homeostasis. Although the participation of angiotensin II (Ang II) AT2 receptors (AT 2R) in cellular apoptosis is well accepted, the signaling pathway involved in this process is not well established. We evaluated the participation of signaling proteins focal adhesion kinase (FAK), RhoA, and p38 mitogen-activated protein kinase (p38MAPK) in apoptosis induced by Ang II via AT 2R overexpressed in HeLa cells. Following a short stimulation time (120 to 240 minutes) with Ang II, HeLa-AT 2 cells showed nuclear condensation, stress fibers disassembly and membrane blebbing. FAK, classically involved in cytoskeleton reorganization, has been postulated as an early marker of cellular apoptosis. Thus, we evaluated FAK cleavage, detected at early stimulation times (15 to 30 minutes). Apoptosis was confirmed by increased caspase-3 cleavage and enzymatic activity of caspase-3/7. Participation of RhoA was evaluated. HeLa-AT 2 cells overexpressing RhoA wild-type (WT) or their mutants, RhoA V14 (constitutively active form) or RhoA N19 (dominant-negative form) were used to explore RhoA participation. HeLa-AT 2 cells expressing the constitutively active variant RhoA V14 showed enhanced apoptotic features at earlier times as compared with cells expressing the WT variant. RhoA N19 expression prevented nuclear condensation/caspase activation. Inhibition of p38MAPK caused an increase in nuclear condensation and caspase-3/7 activation, suggesting a protective role of p38MAPK. Our results clearly demonstrated that stimulation of AT 2R induce apoptosis with participation of FAK and RhoA while p38MAPK seems to play a prosurvival role.  相似文献   

14.
Rectal cancer represents about 30% of colorectal cancers, being around 50% locally advanced at presentation. Chemoradiation (CRT) followed by total mesorectal excision is the standard of care for these locally advanced stages. However, it is not free of adverse effects and toxicity and the complete pathologic response rate is between 10% and 30%. This makes it extremely important to define factors that can predict response to this therapy. Focal adhesion kinase (FAK) expression has been correlated with worse prognosis in several tumours and its possible involvement in cancer radio‐ and chemosensitivity has been suggested; however, its role in rectal cancer has not been analysed yet. To analyse the association of FAK expression with tumour response to CRT in locally advanced rectal cancer. This study includes 73 patients with locally advanced rectal cancer receiving standard neoadjuvant CRT followed by total mesorectal excision. Focal adhesion kinase protein levels were immunohistochemically analysed in the pre‐treatment biopsies of these patients and correlated with tumour response to CRT and patients survival. Low FAK expression was significantly correlated with local and distant recurrence (P = 0.013). Low FAK expression was found to be a predictive marker of tumour response to neoadjuvant therapy (P = 0.007) and patients whose tumours did not express FAK showed a strong association with lower disease‐free survival (P = 0.01). Focal adhesion kinase expression predicts neoadjuvant CRT response in rectal cancer patients and it is a clinically relevant risk factor for local and distant recurrence.  相似文献   

15.
Mitsugumin 53 (MG53), which is expressed predominantly in striated muscle, has been demonstrated to be a myokine/cardiokine secreted from striated muscle under specific conditions. The important roles of MG53 in non-striated muscle tissues have also been examined in multiple disease models. However, no previous study has implicated MG53 in the control of endothelial cell function. In order to explore the effects of MG53 on endothelial cells, human umbilical vein endothelial cells (HUVECs) were stimulated with recombinant human MG53 (rhMG53). Then, rhMG53 uptake, focal adhesion kinase (FAK)/Src/Akt/ERK1/2 signalling pathway activation, cell migration and tube formation were determined in vitro. The efficacy of rhMG53 in regulating angiogenesis was also detected in postnatal mouse retinas. The results demonstrated that rhMG53 directly entered into endothelial cells in a cholesterol-dependent manner. The uptake of rhMG53 directly bound to FAK in endothelial cells, which resulted in a significant decrease in FAK phosphorylation at Y397. Accompanied by the dephosphorylation of FAK, rhMG53 uncoupled FAK-Src interaction and reduced the phosphorylation of Src at Y416. Consequently, the activation of FAK/Src downstream signalling pathways, such as Akt and ERK1/2, was also significantly inhibited by rhMG53. Furthermore, rhMG53 remarkably decreased HUVEC migration and tube formation in vitro and postnatal mouse retinal angiogenesis in vivo. Taken together, these data indicate that rhMG53 inhibits angiogenesis through regulating FAK/Src/Akt/ERK1/2 signalling pathways. This may provide a novel molecular mechanism for the impaired angiogenesis in ischaemic diseases.  相似文献   

16.
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1α,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115-to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115–130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p 125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function.  相似文献   

17.
Focal adhesions play an important role in promoting embryo invasion; in particular, focal adhesions disassemble at the time of implantation in the rat, facilitating the detachment of the uterine luminal epithelium to allow the embryo to invade the endometrium. This study investigated focal adhesion protein, focal adhesion kinase (FAK) in the rat uterine luminal, and glandular epithelial cells to understand the dynamics of focal adhesions during early pregnancy. FAK undergoes extensive distributional change during early pregnancy, and surprisingly, FAK was not localized at the site of focal adhesions, instead being localized to the site of cell‐to‐cell contact and colocalizing with ZO‐1 on day 1 of pregnancy. At the time of implantation, FAK increases in the apical region of the uterine luminal epithelial cells which was regulated by progesterone. Using an in vitro co‐culture model of rat blastocysts attached to Ishikawa cells, FAK was present apically both in the rat blastocyst and the Ishikawa cells, suggesting a role in attachment andin mediating signal transduction between these two genetically different cell types. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Human urine-derived stem cells (hUSCs) serve as favorable candidates for bone transplants due to their efficient proliferative and multipotent differentiation abilities, as well as the capacity to secrete a variety of vasoactive agents to facilitate tissue engineering. The present study aimed to explore the role of focal adhesion kinase (FAK) in bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation of hUSCs and to investigate the underlying mechanism. The degree of osteogenic differentiation and the correlated signals, following BMP2 overexpression and siRNA-mediated silencing of FAK, were determined in vitro. Moreover, hUSCs induced bone formation in a rat model with cranial defects, in vivo. Our findings revealed that alkaline phosphatase production, calcium deposits, osteocalcin and osteopontin expression, and bone formation were upregulated in vitro and in vivo following BMP2-induced osteogenic differentiation, and AMPK and Wnt signaling pathway activation by FAK could effectively regulate BMP2-enhanced osteogenic differentiation of hUSCs. Taken together, these findings indicated that FAK could mediate BMP2-enhanced osteogenic differentiation of hUSCs through activating adenosine 5’-monophosphate-activated protein kinase and Wnt signaling pathways.  相似文献   

19.
Wee1, a protein kinase, regulates the G2 checkpoint in response to DNA damage. Preclinical studies have elucidated the role of wee1 in DNA damage repair and the stabilization of replication forks, supporting the validity of wee1 inhibition as a viable therapeutic target in cancer. MK-1775, a selective and potent small-molecule inhibitor of wee1, is under clinical development as a potentiator of DNA damage caused by cytotoxic chemotherapies. We present a review of the role of wee1 in the cell cycle and DNA replication and summarize the clinical development to date of this novel class of anticancer agents.  相似文献   

20.
In this study, we investigated the influence of inorganic lead (Pb(II)), an environmental pollutant having nephrotoxic action, on the focal adhesion (FA) organization of a rat kidney epithelial cell line (NRK-52E). In particular, we evaluated the effects of the metal on the recruitment of paxillin, focal adhesion kinase, vinculin and cytoskeleton proteins at the FAs complexes. We provided evidences that, in proliferating NRK-52E cell cultures, low concentrations of Pb(II) affect the cell adhesive ability and stimulate the disassembly of FAs, thus inhibiting the integrin-activated signalling. These effects appeared to be strictly associated to the Pb-induced arrest of cell cycle at G0/G1 phase also proved in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号