首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the gamma(1)34.5 and Us11 gene products, are produced late in the viral life cycle, although the gamma(1)34.5 gene is expressed prior to the gamma(2) Us11 gene, as gamma(2) genes require viral DNA replication for their expression while gamma(1) genes do not. The gamma(1)34.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1alpha), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a gamma(1)34.5 mutant virus results in the accumulation of phosphorylated eIF2alpha and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2alpha phosphorylation and the inhibition of translation observed in cells infected with a gamma(1)34.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2alpha; however, a requirement for the Us11 protein, produced in its natural context as a gamma(2) polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2alpha were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus, previously ascribed solely to the gamma(1)34.5 mutation, actually results from the combined loss of gamma(1)34.5 and Us11 functions, as the gamma(2) Us11 mRNA is not translated in cells infected with a gamma(1)34.5 mutant.  相似文献   

2.
I Mohr  Y Gluzman 《The EMBO journal》1996,15(17):4759-4766
Novel suppressor variants of conditionally lethal HSV-1 gamma34.5 deletion mutants have been isolated which exhibit restored ability to grow on neoplastic neuronal cells. Deletion of the viral gamma34.5 genes, whose products share functional similarity with the cellular GADD34 gene, renders the virus non-neurovirulent and imposes a block to viral replication in neuronal cells. Protein synthesis ceases at late times post-infection and the translation initiation factor eIF2alpha is phosphorylated by the cellular PKR kinase [Chou et al. (1990) Science, 252, 1262-1266; (1995) Proc. Natl Acad. Sci. USA, 92, 10516-10520]. The suppressor mutants have overcome the translational block imposed by PKR. Multiple, independent isolates all contain rearrangements within a 595 bp element in the HSV-1 genome where the unique short component joins the terminal repeats. This alteration, which affects the production of the viral mRNA and protein from the Us11 and Us12 genes, is both necessary and sufficient to confer the suppressor phenotype on gamma34.5 mutant viruses. HSV-1 thus encodes a specific element which inhibits ongoing protein synthesis in the absence of the viral GADD34-like function. Since this inhibition involves the accumulation of phosphorylated eIF2alpha, the element identified by the suppressor mutations may be a discrete PKR activator. Activation of the PKR kinase thus does not proceed through a general, cellular 'antiviral' sensing mechanism. Instead, the virus deliberately activates PKR and encodes a separate function which selectively prevents the phosphorylation of at least one PKR target, eIF2alpha. The nature of this potential activator element, and how analogous cellular elements could affect PKR pathways which affect growth arrest and differentiation are discussed.  相似文献   

3.
Poppers J  Mulvey M  Khoo D  Mohr I 《Journal of virology》2000,74(23):11215-11221
Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The gamma 34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the gamma 34.5 gene specifies a regulatory subunit for protein phosphatase 1 alpha, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. gamma 34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of gamma 34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.  相似文献   

4.
Mulvey M  Arias C  Mohr I 《Journal of virology》2006,80(15):7354-7363
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.  相似文献   

5.
Autophagy is now known to be an essential component of host innate and adaptive immunity. Several herpesviruses have developed various strategies to evade this antiviral host defense. Herpes simplex virus 1 (HSV-1) blocks autophagy in fibroblasts and in neurons, and the ICP34.5 protein is important for the resistance of HSV-1 to autophagy because of its interaction with the autophagy machinery protein Beclin 1. ICP34.5 also counteracts the shutoff of protein synthesis mediated by the double-stranded RNA (dsRNA)-dependent protein kinase PKR by inhibiting phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in the PKR/eIF2α signaling pathway. Us11 is a late gene product of HSV-1, which is also able to preclude the host shutoff by direct inhibition of PKR. In the present study, we unveil a previously uncharacterized function of Us11 by demonstrating its antiautophagic activity. We show that the expression of Us11 is able to block autophagy and autophagosome formation in both HeLa cells and fibroblasts. Furthermore, immediate-early expression of Us11 by an ICP34.5 deletion mutant virus is sufficient to render the cells resistant to PKR-induced and virus-induced autophagy. PKR expression and the PKR binding domain of Us11 are required for the antiautophagic activity of Us11. However, unlike ICP34.5, Us11 did not interact with Beclin 1. We suggest that the inhibition of autophagy observed in cells infected with HSV-1 results from the activity of not only ICP34.5 on Beclin 1 but also Us11 by direct interaction with PKR.  相似文献   

6.
Cheng G  Feng Z  He B 《Journal of virology》2005,79(3):1379-1388
The gamma(1)34.5 protein of herpes simplex virus (HSV) plays a crucial role in virus infection. Although the double-stranded RNA-dependent protein kinase (PKR) is activated during HSV infection, the gamma(1)34.5 protein inhibits the activity of PKR by mediating dephosphorylation of the translation initiation factor eIF-2alpha. Here we show that HSV infection also induces phosphorylation of an endoplasmic reticulum (ER) resident kinase PERK, a hallmark of ER stress response. The virus-induced phosphorylation of PERK is blocked by cycloheximide but not by phosphonoacetic acid, suggesting that the accumulation of viral proteins in the ER is essential. Notably, the maximal phosphorylation of PERK is delayed in PKR+/+ cells compared to that seen in PKR-/- cells. Further analysis indicates that hyperphosphorylation of eIF-2alpha caused by HSV is greater in PKR+/+ cells than in PKR-/- cells. However, expression of the gamma(1)34.5 protein suppresses the ER stress response caused by virus, dithiothreitol, and thapsigargin as measured by global protein synthesis. Interestingly, the expression of GADD34 stimulated by HSV infection parallels the status of eIF-2alpha phosphorylation. Together, these observations suggest that regulation of eIF-2alpha phosphorylation by the gamma(1)34.5 protein is an efficient way to antagonize the inhibitory activity of PKR as well as PERK during productive infection.  相似文献   

7.
8.
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the α-subunit of eukaryotic initiation factor 2 (eIF2α), inhibiting the function of the eIF2 complex and continued initiation of translation. When bound to an activating RNA and ATP, PKR undergoes autophosphorylation reactions at multiple serine and threonine residues. This autophosphorylation reaction stimulates the eIF2α kinase activity of PKR. The binding of certain viral RNAs inhibits the activation of PKR. Wild-type PKR is obtained as a highly phosphorylated protein when overexpressed in Escherichia coli. We report here that treatment of the isolated phosphoprotein with the catalytic subunit of protein phosphatase 1 dephosphorylates the enzyme. The in vitro autophosphorylation and eIF2α kinase activities of the dephosphorylated enzyme are stimulated by addition of RNA. Thus, inactivation by phosphatase treatment of autophosphorylated PKR obtained from overexpression in bacteria generates PKR in a form suitable for in vitro analysis of the RNA-induced activation mechanism. Furthermore, we used gel mobility shift assays, methidiumpropyl-EDTA·Fe footprinting and affinity chromatography to demonstrate differences in the RNA-binding properties of phospho- and dephosphoPKR. We found that dephosphorylation of PKR increases binding affinity of the enzyme for both kinase activating and inhibiting RNAs. These results are consistent with an activation mechanism that includes release of the activating RNA upon autophosphorylation of PKR prior to phosphorylation of eIF2α.  相似文献   

9.
Protein kinase R (PKR) functions in a plethora of cellular processes, including viral and cellular stress responses, by phosphorylating the translation initiation factor eIF2α. The minimum requirements for PKR function are homodimerization of its kinase and RNA-binding domains, and autophosphorylation at the residue Thr-446 in a flexible loop called the activation loop. We investigated the interdependence between dimerization and Thr-446 autophosphorylation using the yeast Saccharomyces cerevisiae model system. We showed that an engineered PKR that bypassed the need for Thr-446 autophosphorylation (PKRT446∼P-bypass mutant) could function without a key residue (Asp-266 or Tyr-323) that is essential for PKR dimerization, suggesting that dimerization precedes and stimulates activation loop autophosphorylation. We also showed that the PKRT446∼P-bypass mutant was able to phosphorylate eIF2α even without its RNA-binding domains. These two significant findings reveal that PKR dimerization and activation loop autophosphorylation are mutually exclusive yet interdependent processes. Also, we provide evidence that Thr-446 autophosphorylation during PKR activation occurs in a cis mechanism following dimerization.  相似文献   

10.
The impact of respiratory syncytial virus (RSV) on morbidity and mortality is significant in that it causes bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and pneumonia in immunocompromised hosts. RSV activates protein kinase R (PKR), a cellular kinase relevant to limiting viral replication (Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C., and Hunninghake, G. W. (2006) J. Immunol. 176, 1733–1740). It is activated by autophosphorylation, likely triggered by a double-stranded RNA intermediate during replication of the virus. In most instances, ph-PKR targets the α subunit of eukaryotic translation initiation factor 2 (eIF2α) protein via phosphorylation, leading to an inhibition of translation of cellular and viral protein. However, we found that although ph-PKR increases in RSV infection, significant eIF2α phosphorylation is not observed, and inhibition of protein translation does not occur. RSV infection attenuates eIF2α phosphorylation by favoring phosphatase rather than kinase activity. Although PKR is activated, RSV sequesters PKR away from eIF2α by binding of the kinase to the RSV N protein. This occurs in conjunction with an increase in the association of the phosphatase, PP2A, with eIF2α following PKR activation. The result is limited phosphorylation of eIF2α and continued translation of cellular and viral proteins.  相似文献   

11.
The protein kinase PKR is a major player in the cellular antiviral response, acting mainly by phosphorylation of the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF2-alpha) to block de novo protein synthesis. PKR activation requires binding of double-stranded RNA or PACT/RAX proteins to its regulatory domain. Since several reports have demonstrated that translation is inhibited in apoptosis, we investigated whether PKR and eIF2-alpha phosphorylation contribute to this process. We show that PKR is proteolysed and that eIF2-alpha is phosphorylated at the early stages of apoptosis induced by various stimuli. Both events coincide with the onset of caspase activity and are prevented by caspase inhibitors. Using site-directed mutagenesis we show that PKR is specifically proteolysed at Asp(251) during cellular apoptosis. This site is cleaved in vitro by recombinant caspase-3, caspase-7, and caspase-8 and not by the proinflammatory caspase-1 and caspase-11. The released kinase domain efficiently phosphorylates eIF2-alpha at the cognate Ser(51) residue, and its overexpression in mammalian cells impairs the translation of its own mRNA and of reporter mRNAs. Our results demonstrate a new and caspase-dependent activation mode for PKR, leading to eIF2-alpha phosphorylation and translation inhibition in apoptosis.  相似文献   

12.
Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection.  相似文献   

13.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

14.
The dsRNA protein kinase PKR: virus and cell control   总被引:12,自引:0,他引:12  
García MA  Meurs EF  Esteban M 《Biochimie》2007,89(6-7):799-811
  相似文献   

15.
16.
Gil J  Esteban M  Roth D 《Biochemistry》2000,39(25):7521-7530
The regulation of protein synthesis is a critical component in the maintenance of cellular homeostasis. A major mechanism of translational control in response to diverse abiotic and biotic stress signals involves the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). The pathway has been demonstrated in all eukaryotes except plants, although components of a putative plant pathway have been characterized. To evaluate the in vivo capability of plant eIF2alpha to participate in the translation pathway, we have used vaccinia virus recombinants that constitutively express wheat eIF2alpha and inducibly express the eIF2alpha dsRNA-stimulated protein kinase, PKR, in BSC-40 cells. Activation of PKR in cells expressing wild-type wheat eIF2alpha resulted in an inhibition of cellular and viral protein synthesis and an induction of cellular apoptosis correlating with phosphorylation of eIF2alpha on serine 51. Expression of a nonphosphorylatable mutant (51A) of plant eIF2alpha reversed the PKR-mediated translational block as well as the PKR-induced apoptosis. A direct interaction of the plant proteins with the mammalian translational initiation apparatus is supported by coimmunoprecipitation of wild-type plant eIF2alpha and the 51A mutant with mammalian eIF2gamma and the localization of the plant proteins in ribosome fractions. These findings suggest that plant eIF2alpha is capable of interacting with the guanine nucleotide exchange factor eIF2B within the context of the eIF2 holoenzyme and provide direct evidence for its ability to participate in phosphorylation-mediated translational control in vivo.  相似文献   

17.
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.  相似文献   

18.
The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication. Fish appear to have a PKR-like protein that has Z-DNA binding domains instead of dsRNA binding domains in the regulatory domain, and has thus been termed Z-DNA binding protein kinase (PKZ). We present the cloning of the Atlantic salmon PKZ cDNA and show its upregulation by interferon in Atlantic salmon TO cells and poly inosinic poly cytodylic acid in head kidney. We also demonstrate that recombinant Atlantic salmon PKZ, expressed in Escherichia coli, phosphorylates eIF2alphain vitro. This is the first demonstration that PKZ is able to phosphorylate eIF2alpha. PKZ activity, as measured by phosphorylation of eIF2alpha, was increased after addition of Z-DNA, but not by dsRNA. In addition, we show that wild-type Atlantic salmon PKZ, but not the kinase defective variant K217R, has a direct inhibitory effect on protein synthesis after transient expression in Chinook salmon embryo cells. Overall, the results support a role for PKZ, like PKR, in host defense against virus infection.  相似文献   

19.
The NS5A nonstructural protein of hepatitis C virus (HCV) has been shown to inhibit the cellular interferon (IFN)-induced protein kinase R (PKR). PKR mediates the host IFN-induced antiviral response at least in part by inhibiting mRNA translation initiation through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). We thus examined the effect of NS5A inhibition of PKR on mRNA translation within the context of virus infection by using a recombinant vaccinia virus (VV)-based assay. The VV E3L protein is a potent inhibitor of PKR. Accordingly, infection of IFN-pretreated HeLa S3 cells with an E3L-deficient VV (VVDeltaE3L) resulted in increased phosphorylation levels of both PKR and eIF2alpha. IFN-pretreated cells infected with VV in which the E3L locus was replaced with the NS5A gene (VVNS5A) displayed diminished phosphorylation of PKR and eIF2alpha in a transient manner. We also observed an increase in activation of p38 mitogen-activated protein kinase in IFN-pretreated cells infected with VVDeltaE3L, consistent with reports that p38 lies downstream of the PKR pathway. Furthermore, these cells exhibited increased phosphorylation of the cap-binding initiation factor 4E (eIF4E), which is downstream of the p38 pathway. Importantly, these effects were reduced in cells infected with VVNS5A. NS5A was also found to inhibit activation of the p38-eIF4E pathway in epidermal growth factor-treated cells stably expressing NS5A. NS5A-induced inhibition of eIF2alpha and eIF4E phosphorylation may exert counteracting effects on mRNA translation. Indeed, IFN-pretreated cells infected with VVNS5A exhibited a partial and transient restoration of cellular and viral mRNA translation compared with IFN-pretreated cells infected with VVDeltaE3L. Taken together, these results support the role of NS5A as a PKR inhibitor and suggest a potential mechanism by which HCV might maintain global mRNA translation rate during early virus infection while favoring cap-independent translation of HCV mRNA during late infection.  相似文献   

20.
The herpes simplex virus type 1 gamma(1)34.5 gene product precludes the host-mediated protein shutoff response induced by activated protein kinase R (PKR). Earlier studies demonstrated that recombinant viruses lacking the gamma(1)34.5 gene (Deltagamma(1)34.5) developed secondary mutations that allowed earlier U(S)11 expression and enabled continued protein synthesis. Further, in vitro studies demonstrated that a recombinant expressed U(S)11 protein binds PKR, blocks the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) by activated PKR, and, if provided prior to PKR activation, precluded PKR autophosphorylation. The present study furthers the hypothesis that early U(S)11 production precludes PKR-mediated host protein shutoff by demonstrating that (i) U(S)11 and PKR interact in the context of viral infection, (ii) this interaction is RNA dependent and requires a 30-amino-acid domain (amino acids 91 to 121) in the carboxyl domain of the U(S)11 protein, (iii) the proteins biochemically colocalize in the S100 ribosomal fraction, and (iv) there is a PKR substrate domain immediately adjacent to the binding domain. The results suggest that the U(S)11 interaction with PKR at the ribosome is RNA dependent and that the U(S)11 protein contains a substrate domain with homology to eIF-2alpha in close proximity to an essential binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号