首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection.  相似文献   

2.
CD4(+) T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4(+) T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4(+) T cells was markedly reduced when cultured with splenic CD8α(+) DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4(+) or CD4(-)CD8α(-) DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α(+) DCs, but not in CD4(+) and CD4(-)CD8α(-) DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α(+) DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α(+) DCs. Three days post infection with Ye the number of splenic CD8α(+) and CD4(+) DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4(+) and CD8α(+) DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye.  相似文献   

3.
During an acute Plasmodium infection, uncontrolled proinflammatory responses can cause morbidity and mortality. Regulation of this response is required to prevent immunopathology. We therefore decided to investigate a recently characterized subset of regulatory dendritic cells (DCs) that expresses low levels of CD11c and high levels of CD45RB. During a Plasmodium yoelii infection, these regulatory CD11clowCD45RBhigh DCs become the prevalent CD11c-expressing cells in the spleen, overtaking the conventional CD11chigh DCs. Furthermore, the regulatory CD11clowCD45RBhigh DCs induce IL-10-expressing CD4 T cells. A similar change in splenic DC subsets is seen when mice are injected with sublethal doses of LPS, suggesting that shifting the splenic DC subsets in favor of regulatory CD11clowCD45RBhigh DCs can be triggered solely by a high inflammatory stimulus. This is the first time regulatory DCs have been observed in a natural immune response to an infectious disease or endotoxic shock.  相似文献   

4.
The ability of the dendritic cell (DC) subsets, CD8alpha+ and CD8alpha- DCs, to initiate a CD8 T cell response or to activate memory CD8 T cells and generate effector CD8 T cells has been controversial. In this study, we analyse the capacity of splenic DC subsets to induce CD8 T cell responses to a CD8 T cell epitope (pb9) of a malaria antigen. The administration of peptide-pulsed CD8alpha- or CD8alpha+ DCs primes and boosts a primed CD8 T cell response against the malaria epitope. In vitro, depletion of CD11c(+) DCs from mouse splenocytes, immunised with recombinant vaccinia virus Ankara (MVA) expressing pb9 epitope, significantly reduced the generation of pb9-specific IFNgamma producing effector CD8 T cells, indicating that splenic DCs are involved in the development of pb9-specific IFNgamma producing effector cells. Taken together, this result shows that both DC subsets have the ability to prime and boost CD8 T cell responses and are involved in the activation of memory CD8 T cells.  相似文献   

5.
6.
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate na?ve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.  相似文献   

7.
Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells.  相似文献   

8.
We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules, CD1a, CD11c, CD80, CD86, DC-SIGN, and CD40; and were capable of Ag processing, triggering naive T cells in MLR, and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14, and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition, because ES cells can be expanded without limit, they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.  相似文献   

9.
Gastrointestinal helminth infections are extremely prevalent in many human populations and are associated with downmodulated immune responsiveness. In the experimental model system of Heligmosomoides polygyrus, a chronic infection establishes in mice, accompanied by a modulated Th2 response and increased regulatory T cell (Treg) activity. To determine if dendritic cell (DC) populations in the lymph nodes draining the intestine are responsible for the regulatory effects of chronic infection, we first identified a population of CD11c(lo) nonplasmacytoid DCs that expand after chronic H. polygyrus infection. The CD11c(lo) DCs are underrepresented in magnetic bead-sorted preparations and spared from deletion in CD11c-diptheria toxin receptor mice. After infection, CD11c(lo) DCs did not express CD8, CD103, PDCA, or Siglec-H and were poorly responsive to TLR stimuli. In DC/T cell cocultures, CD11c(lo) DCs from naive and H. polygyrus-infected mice could process and present protein Ag, but induced lower levels of Ag-specific CD4(+) T cell proliferation and effector cytokine production, and generated higher percentages of Foxp3(+) T cells in the presence of TGF-β. Treg generation was also dependent on retinoic acid receptor signaling. In vivo, depletion of CD11c(hi) DCs further favored the dominance of the CD11c(lo) DC phenotype. After CD11c(hi) DC depletion, effector responses were inhibited dramatically, but the expansion in Treg numbers after H. polygyrus infection was barely compromised, showing a significantly higher regulatory/effector CD4(+) T cell ratio compared with that of CD11c(hi) DC-intact animals. Thus, the proregulatory environment of chronic intestinal helminth infection is associated with the in vivo predominance of a newly defined phenotype of CD11c(lo) tolerogenic DCs.  相似文献   

10.
Autoimmune diabetes results from a breakdown of self-tolerance that leads to T cell-mediated beta-cell destruction. Abnormal maturation and other defects of dendritic cells (DCs) have been associated with the development of diabetes. Evidence is accumulating that self-tolerance can be restored and maintained by semimature DCs induced by GM-CSF. We have investigated whether GM-CSF is a valuable strategy to induce semimature DCs, thereby restoring and sustaining tolerance in NOD mice. We found that treatment of prediabetic NOD mice with GM-CSF provided protection against diabetes. The protection was associated with a marked increase in the number of tolerogenic immature splenic DCs and in the number of Foxp3+CD4+CD25+ regulatory T cells (Tregs). Activated DCs from GM-CSF-protected mice expressed lower levels of MHC class II and CD80/CD86 molecules, produced more IL-10 and were less effective in stimulating diabetogenic CD8+ T cells than DCs of PBS-treated NOD mice. Adoptive transfer experiments showed that splenocytes of GM-CSF-protected mice did not transfer diabetes into NOD.SCID recipients. Depletion of CD11c+ DCs before transfer released diabetogenic T cells from the suppressive effect of CD4+CD25+ Tregs, thereby promoting the development of diabetes. These results indicated that semimature DCs were required for the sustained suppressive function of CD4+CD25+ Tregs that were responsible for maintaining tolerance of diabetogenic T cells in NOD mice.  相似文献   

11.
Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c- plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c- IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c- precursors (>7-fold). Freshly sorted CD11c+ but not CD11c- cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c- cells can be induced to secrete high levels of IFN-alpha, in response to influenza virus. CD11c+ and CD11c- cells can mature in vitro with GM-CSF + TNF-alpha or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c- subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.  相似文献   

12.
BACKGROUND: Heterogeneity within human dendritic cells (DCs) has been described but its functional relationships to cells of macrophage lineage and its role in human immunodeficiency virus (HIV) infection in vivo remain unclear. METHODS: Tonsil macrophages and DCs were isolated from low-density cells by negative selection and DCs were sorted into myeloid and plasmacytoid populations using antibodies to CD11c or CD123. Phagocytosis of latex beads and uptake of dye-labeled target cells were compared by flow cytometry and CD68 and S-100 by immunofluorescence on cytospins of sorted cells. RESULTS: Bead uptake and membrane dye transfer were found in both blood and tonsil CD11c(+) DCs and in CD14(+) cells particularly from blood monocytes. CD11c(-) DCs were poorly phagocytic but took up fluorescent dye from intact, necrotic or apoptotic cells. Tonsil DCs and macrophages expressed both CD68 and S-100 but CD11c(-) DCs expressed CD68 only. CONCLUSIONS: Freshly isolated CD11c(+) tonsil DCs are similar to CD14(+) macrophages in phagocytic function but the poorly phagocytic CD11c(-) DCs can also take up membrane from target cells. The intracellular markers commonly used to identify DCs and macrophages in situ do not identify accurately the CD11c(-) DC subset nor do they distinguish tonsil macrophages from DCs.  相似文献   

13.
Germinal center dendritic cells (GCDCs) have been identified as CD11c(+) CD4(+) CD3(-) cells located in GCs with the ability of inducing marked proliferation of allogenic T cells. Using immunofluorescence techniques, we have observed that this CD11c(+) CD4(+) CD3(-) immunophenotype identified GCDCs but also a subset of extrafollicular DCs. By flow cytometry, we were able to discriminate the GCDCs (CD11c(high) CD4(high) lin(-)) from the other tonsil DCs. By immunofluorescence and flow cytometry, we found that dendritic cells of germinal centers express more intracellular adhesion molecule-1 (ICAM-1) (CD54) than extrafollicular dendritic cells. Proliferation of peripheral blood mononuclear cells (PBMCs) induced by coculture with purified CD11c(+) CD4(+) CD3(-) DCs was reduced by addition of blocking anti-CD54 antibodies. In summary, distinct levels of ICAM-1 expression allow the distinction between GCDCs and extrafollicular DCs, and cellular interactions mediated by CD54 are likely to play a role in the capacity of GCDC to stimulate allogenic PBMC proliferation.  相似文献   

14.
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.  相似文献   

15.
Lung dendritic cells (DCs) are difficult to study due to their limited quantities and the complexities required for isolation. Although many procedures have been used to overcome this challenge, the effects of isolation techniques on lung DCs have not been reported. The current study shows that freshly isolated DCs (CD11c+) have limited ability to induce proliferation in allogeneic T cells, and are immature as indicated by low cell surface expression of costimulatory molecules compared with liver or splenic DCs. DCs isolated after overnight culture or from mice treated with Flt3L are phenotypically mature and potent stimulators of allogeneic T cells. DCs could not be propagated from lung mononuclear cells in response to IL-4 and GM-CSF. Contrary to data reported for nonpulmonary DCs, expression of CCR6 was decreased on mature lung DCs, and only a subset of mature DCs expressed higher levels of CCR7. Absence of CD8alpha expression indicates that freshly isolated DCs are myeloid-type, whereas mature DCs induced by overnight culture are both "lymphoid" (CD8alpha+) and "myeloid" (CD8alpha-). DCs from mice genetically deficient in CD8alpha expression were strong simulators of allogeneic T cells which was consistent with data showing that CD8alpha- DCs from CD8alpha-sufficient mice are better APCs compared with CD8alpha+ DCs from the same mice. These data show that freshly isolated lung DCs are phenotypically and functionally distinct, and that the isolation technique alters the biology of these cells. Therefore, lung DC phenotype and function must be interpreted relative to the technique used for isolation.  相似文献   

16.
Based on the relative expression of CD11c and CD1a, we have identified three fractions of dendritic cells (DCs) in human peripheral blood, including a direct precursor of Langerhans cells (LCs). The first two fractions were CD11c+ DCs, comprised of a major CD1a+/CD11c+ population (fraction 1), and a minor CD1a-/CD11c+ component (fraction 2). Both CD11c+ fractions displayed a monocyte-like morphology, endocytosed FITC-dextran, expressed CD45RO and myeloid markers such as CD13 and CD33, and possessed the receptor for GM-CSF. The third fraction was comprised of CD1a-/CD11c- DCs (fraction 3) and resembled plasmacytoid T cells. These did not uptake FITC-dextran, were negative for myeloid markers (CD13/CD33), and expressed CD45RA and a high level of IL-3Ralpha, but not GM-CSF receptors. After culture with IL-3, fraction 3 acquired the characteristics of mature DCs; however, the expression of CD62L (lymph node-homing molecules) remained unchanged, indicating that fraction 3 can be a precursor pool for previously described plasmacytoid T cells in lymphoid organs. Strikingly, the CD1a+/CD11c+ DCs (fraction 1) quickly acquired LC characteristics when cultured in the presence of GM-CSF + IL-4 + TGF-beta1. Thus, E-cadherin, Langerin, and Lag Ag were expressed within 1 day of culture, and typical Birbeck granules were observed. In contrast, neither CD1a-/CD11c+ (fraction 2) nor CD1a-/CD11c- (fraction 3) cells had the capacity to differentiate into LCs. Furthermore, CD14+ monocytes only expressed E-cadherin, but lacked the other LC markers after culture in these cytokines. Therefore, CD1a+/CD11c+ DCs are the direct precursors of LCs in peripheral blood.  相似文献   

17.
To study the effect of adoptive transfer of paternal antigen-tolerant T cells on recipient reactive T cells, CBA/JxDBA/2 mating was recruited as an abortion-prone model, and CBA/JxBALB/c mating as a successful pregnancy model. The abortion-prone CBA/J females mated with DBA/2 males were injected intraperitoneally with rat anti-mouse CD80 and CD86 mAb or rat isotype IgG at day 4 after gestation (time of implantation). The purified T cells were obtained from spleen of the pregnant CBA/J mice using magnetic beads at day 9 after gestation and labeled with CFSE in vitro. The CFSE-labeled T cells were intravenously injected into other CBA/J females mated with DBA/2 males at day 4 after gestation. The proliferation of recipient splenocytes in response to DBA/2 stimulator cells was evaluated at day 9 after gestation in vitro, and the expressions of intracellular cytokines and costimulatory molecules in CFSE +/- T cells were analyzed by flow cytometry. The results showed that adoptive transfer of either paternal antigen-tolerant T cells or T cells from BALB/c-mated CBA/J mice significantly suppressed the proliferation of recipient splenocytes in response to DBA/2 stimulator cells and resulted in lower frequency of cells positive for IL-2, IFN-gamma, CD28 and higher frequency of IL-10,CTLA-4-producing cells in both CFSE+ CD3+ population and CFSE- CD3+ population compared with adoptive transfer of T cells from isotype IgG-treated CBA/J mice, whereas the frequency of IL-4-producing cells did not appear significant change. Our findings suggest that paternal antigen-tolerant T cells transferred in recipient not only function as antigen-specific suppresser cells but also disable the recipient reactive T cells, which co-suppresses maternal rejection to the allogeneic fetus, thus resulting in the decrease of the embryo resorption rate of the abortion-prone mice to that of the normal pregnancy mice.  相似文献   

18.
The progressive disease following Leishmania amazonensis infection in mice requires functional CD4(+) T cells, which are primed to a disease-promoting phenotype during the infection. To understand how these pathogenic T cells are generated and the role of dendritic cells (DCs) in this process, we use DCs of susceptible BALB/c and resistant C3H/HeJ mice to examine parasite-DC interactions in vitro as well as the effector phenotype of T cells primed by parasite-exposed DCs in vivo. Our results demonstrate that amastigotes and metacyclics efficiently enter and activate DCs of both genetic backgrounds. Infection with amastigotes fails to induce CD40-dependent IL-12 production, but rather potentiates IL-4 production in BALB/c DCs. Upon transfer into syngeneic recipients, amastigote-exposed BALB/c DCs prime parasite-specific Th cells to produce significantly higher levels of IL-4 and IL-10 than their C3H/HeJ counterparts. Transfer studies with IL-4(-/-) DCs indicate that this enhanced Th2 priming seen in BALB/c mice is partially due to the IL-4 production by amastigote-carrying DCs. These results suggest that L. amazonensis amastigotes may condition DCs of a susceptible host to a state that favors activation of pathogenic CD4(+) T cells, and thereby provide a new perspective on the pathogenesis of cutaneous leishmaniasis and protozoan parasite-host interactions in general.  相似文献   

19.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.  相似文献   

20.
Peripheral tolerance can be induced after the feeding of Ag, which is referred to as oral tolerance. We demonstrated in this study that the oral administration of OVA induced tolerance in an experimental model of asthma in mice, and investigated which cells function as the regulatory cells in the transfer of this oral tolerance. In OVA-fed mice, the percentage of eosinophils in bronchoalveolar lavage fluid, serum IgE levels, airway hyperresponsiveness, and mRNA levels of IL-13 and eotaxin were significantly lower than found in nonfed mice. Histological examination of lung tissue showed a suppression of the accumulation of inflammatory cells in the peribronchial area of OVA-fed mice. Feeding after the first immunization or between the first and the second immunization suppressed these findings, whereas feeding just before the airway Ag challenge did not. The suppression of disease in OVA-fed mice was successfully transferred by injection of whole spleen cells of OVA-fed mice. When CD11c+ dendritic cells (DCs) were removed from splenocytes, this transfer of suppression was completely abolished. The injection of splenic DCs purified from OVA-fed mice alone transferred the suppression, whereas the injection of splenic DCs from naive mice that were cocultured with OVA in vitro did not. These data suggest that not only CD4+ T cells, but also CD11c+ DCs induced by Ag feeding are important for the active transfer of oral tolerance in this murine experimental model of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号