首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanisms of MDT and the nature of persisters have remained elusive. Our previous research has shown that persisters are largely responsible for the recalcitrance of biofilm infections. A general method for isolating persisters was developed, based on lysis of regular cells by ampicillin. A gene expression profile of persisters contained toxin-antitoxin (TA) modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function (for example, aminoglycosides interrupt translation, producing toxic peptides). We reasoned that inhibition of translation will lead to a shutdown of cellular functions, preventing antibiotics from corrupting their targets, giving rise to MDT persister cells. Overproduction of the RelE toxin, an inhibitor of translation, caused a sharp increase in persisters. Functional expression of a putative HipA toxin also increased persisters, while deletion of the hipBA module caused a sharp decrease in persisters in both stationary and biofilm populations. HipA is thus the first validated persister-MDT gene. We suggest that random fluctuation in the levels of MDT proteins leads to the formation of rare persister cells. The function of these specialized dormant cells is to ensure the survival of the population in the presence of lethal factors.  相似文献   

2.
3.
One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021), which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA) pair. MqsR adopts an α/β fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy). Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state.  相似文献   

4.
Listeria monocytogenes can cause the serious infection listeriosis, which despite antibiotic treatment has a high mortality. Understanding the response of L. monocytogenes to antibiotic exposure is therefore important to ensure treatment success. Some bacteria survive antibiotic treatment by formation of persisters, which are a dormant antibiotic-tolerant subpopulation. The purpose of this study was to determine whether L. monocytogenes can form persisters and how bacterial physiology affects the number of persisters in the population. A stationary-phase culture of L. monocytogenes was adjusted to 108 CFU ml−1, and 103 to 104 CFU ml−1 survived 72-h treatment with 100 μg of norfloxacin ml−1, indicating a persister subpopulation. This survival was not caused by antibiotic resistance as regrown persisters were as sensitive to norfloxacin as the parental strain. Higher numbers of persisters (105 to 106) were surviving when older stationary phase or surface-associated cells were treated with 100 μg of norfloxacin ml−1. The number of persisters was similar when a ΔsigB mutant and the wild type were treated with norfloxacin, but the killing rate was higher in the ΔsigB mutant. Dormant norfloxacin persisters could be activated by the addition of fermentable carbohydrates and subsequently killed by gentamicin; however, a stable surviving subpopulation of 103 CFU ml−1 remained. Nitrofurantoin that has a growth-independent mode of action was effective against both growing and dormant cells, suggesting that eradication of persisters is possible. Our study adds L. monocytogenes to the list of bacterial species capable of surviving bactericidal antibiotics in a dormant stage, and this persister phenomenon should be borne in mind when developing treatment regimens.  相似文献   

5.
This review addresses a long standing puzzle in the life and death of bacterial populations—the existence of a small fraction of essentially invulnerable cells. Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanism of MDT and the nature of persisters, which were discovered in 1944, have remained elusive. Our research has shown that persisters are largely responsible for the recalcitrance of infections caused by bacterial biofilms. The majority of infections in the developed world are caused by biofilms, which sparked a renewed interest in persisters. We developed a method to isolate persister cells, and obtained a gene expression profile of Escherichia coli persisters. The profile indicated an elevated expression of toxin-antitoxin modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function, such as translation. For example, aminoglycosides interrupt translation, producing toxic peptides. Inhibition of translation leads to a shutdown of other cellular functions as well, preventing antibiotics from corrupting their targets, which will give rise to tolerant persister cells. Overproduction of chromosomally-encoded toxins such as RelE, an inhibitor of translation, or HipA, causes a sharp increase in persisters. Deletion of the hipBA module produces a sharp decrease in persisters in both stationary and biofilm cells. HipA is thus the first validated persister/MDT gene. We conclude that the function of toxins is the exact opposite of the term, namely, to protect the cell from lethal damage. It appears that stochastic fluctuations in the levels of MDT proteins lead to formation of rare persister cells. Persisters are essentially altruistic cells that forfeit propagation in order to ensure survival of kin cells in the presence of lethal factors.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 327–336.Original Russian Text Copyright © 2005 by Lewis.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

6.
Like many other bacteria, Escherichia coli remain as tiny viable individuals named persisters after being exposed to an antibiotic. These persisters are believed to be phenotypic heterogeneous one rather than mutants, because their progenies are as susceptible to antibiotics as their ancestors. Recently, two persister-related genes (hipB/hipA) were confirmed to belong to a toxin-antitoxin (TA) module. Their control circuit was believed to be responsible for generation of the persister subpopulation. For the well-studied TA module, we build a simple genetic regulation model to explain the phenotypic heterogeneity. We find that a sole double-negative feedback loop is not enough to explain the phenotypic heterogeneity; the cooperation mechanisms in HipB and HipA are indispensable. Moreover, our model illustrates an important persister-related experimental phenomenon: the emergence of the persister depends on the growth rate in continuous culture.  相似文献   

7.
8.
Toxin-Antitoxin modules are small operons involved in stress response and persister cell formation that encode a “toxin” and its corresponding neutralizing “antitoxin”. Regulation of these modules involves a complex mechanism known as conditional cooperativity, which is supposed to prevent unwanted toxin activation. Here we develop mathematical models for their regulation, based on published molecular and structural data, and parameterized using experimental data for F-plasmid ccdAB, bacteriophage P1 phd/doc and E. coli relBE. We show that the level of free toxin in the cell is mainly controlled through toxin sequestration in toxin-antitoxin complexes of various stoichiometry rather than by gene regulation. If the toxin translation rate exceeds twice the antitoxin translation rate, toxins accumulate in all cells. Conditional cooperativity and increasing the number of binding sites on the operator serves to reduce the metabolic burden of the cell by reducing the total amounts of proteins produced. Combining conditional cooperativity and bridging of antitoxins by toxins when bound to their operator sites allows creation of persister cells through rare, extreme stochastic spikes in the free toxin level. The amplitude of these spikes determines the duration of the persister state. Finally, increases in the antitoxin degradation rate and decreases in the bacterial growth rate cause a rise in the amount of persisters during nutritional stress.  相似文献   

9.
Bacterial populations produce antibiotic-tolerant persister cells. A number of recent studies point to the involvement of toxin/antitoxin (TA) modules in persister formation. hipBA is a type II TA module that codes for the HipB antitoxin and the HipA toxin. HipA is an EF-Tu kinase, which causes protein synthesis inhibition and dormancy upon phosphorylation of its substrate. Antitoxins are labile proteins that are degraded by one of the cytosolic ATP-dependent proteases. We followed the rate of HipB degradation in different protease deficient strains and found that HipB was stabilized in a lon(-) background. These findings were confirmed in an in vitro degradation assay, showing that Lon is the main protease responsible for HipB proteolysis. Moreover, we demonstrated that degradation of HipB is dependent on the presence of an unstructured carboxy-terminal stretch of HipB that encompasses the last 16 amino acid residues. Further, substitution of the conserved carboxy-terminal tryptophan of HipB to alanine or even the complete removal of this 16 residue fragment did not alter the affinity of HipB for hipBA operator DNA or for HipA indicating that the major role of this region of HipB is to control HipB degradation and hence HipA-mediated persistence.  相似文献   

10.
Bacterial persistence: some new insights into an old phenomenon   总被引:1,自引:1,他引:0  
Bigger discovered more than 60 years ago, at the very beginning of the antibiotic era, that populations of antibiotic-sensitive bacteria contained a very small fraction (approximately 10−6) of antibiotic-tolerant cells (persisters). Persisters are different from antibiotic-resistant mutants in that their antibiotic tolerance is non-heritable and reversible. In spite of its importance as an interesting biological phenomenon and in the treatment of infectious diseases, persistence did not attract the attention of the scientific community for more than four decades since its discovery. The main reason for this lack of interest was the difficulty in isolating sufficient numbers of persister cells for experimentation, since the proportion of persisters in a population of wild-type cells is extremely small. However, with the discovery of high-persister (hip) mutants of Escherichia coli by Moyed and his group in the early 1980s, the phenomenon attracted the attention of many groups and significant progress has occurred since then. It is now believed that persistence is the end result of a stochastic switch in the expression of some toxin-antitoxin (TA) modules (of which the hipA and hipB genes could be examples), creating an imbalance in their intracellular levels. There are also models invoking the involvement of the alarmone (p) ppGpp in the generation of persisters. However, the precise mechanisms are still unknown. Bacterial persistence is part of a wider gamut of phenomena variously called as bistability, multistability, phenotypic heterogeneity, stochastic switching processes, etc. It has attracted the attention of not only microbiologists but also a diverse band of researchers such as biofilm researchers, evolutionary biologists, sociobiologists, etc. In this article, I attempt to present a broad overview of bacterial persistence to illustrate its significance and the need for further exploration.  相似文献   

11.
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.  相似文献   

12.
Persistence is an epigenetic trait that allows a small fraction of bacteria, approximately one in a million, to survive prolonged exposure to antibiotics. In Escherichia coli an increased frequency of persisters, called "high persistence," is conferred by mutations in the hipA gene, which encodes the toxin entity of the toxin-antitoxin module hipBA. The high-persistence allele hipA7 was originally identified because of its ability to confer high persistence, but little is known about the physiological role of the wild-type hipA gene. We report here that the expression of wild-type hipA in excess of hipB inhibits protein, RNA, and DNA synthesis in vivo. However, unlike the RelE and MazF toxins, HipA had no effect on protein synthesis in an in vitro translation system. Moreover, the expression of wild-type hipA conferred a transient dormant state (persistence) to a sizable fraction of cells, whereas the rest of the cells remained in a prolonged dormant state that, under appropriate conditions, could be fully reversed by expression of the cognate antitoxin gene hipB. In contrast, expression of the mutant hipA7 gene in excess of hipB did not markedly inhibit protein synthesis as did wild-type hipA and yet still conferred persistence to ca. 10% of cells. We propose that wild-type HipA, upon release from HipB, is able to inhibit macromolecular synthesis and induces a bacteriostatic state that can be reversed by expression of the hipB gene. However, the ability of the wild-type hipA gene to generate a high frequency of persisters, equal to that conferred by the hipA7 allele, may be distinct from the ability to block macromolecular synthesis.  相似文献   

13.
A fraction of otherwise antimicrobial-sensitive Bacillus subtilis cells, called persisters, are phenotypically tolerant of antimicrobial treatment. We report that, independently of B. subtilis'' growth phase, transient ζ toxin expression induces a dormant state and alters cellular responses so that cells are more sensitive to antimicrobials with different modes of action. This outcome is modulated by fine tuning (p)ppGpp and GTP levels: i) in the presence of low “dysregulated” (p)ppGpp levels (as in relA cells) hyper-tolerance to both toxin and antimicrobials was observed; ii) physiological or low (p)ppGpp levels (as in the wild-type, sasA , sasB and relA sasA context) show a normal toxin and antimicrobial tolerance; and iii) lower levels (in relA sasB ) or absence of (p)ppGpp (in the relA sasA sasB context), in concert with elevated GTP levels, potentiate the efficacy of both toxin and antimicrobial action, rendering tolerance vulnerable to eradication.  相似文献   

14.
15.
Persistence is a phenomenon whereby a subpopulation of bacterial cells enters a transient growth-arrested state that confers antibiotic tolerance. While entrance into persistence has been linked to the activities of toxin proteins, the molecular mechanisms by which toxins induce growth arrest and the persistent state remain unclear. Here, we show that overexpression of the protein kinase HipA in Escherichia coli triggers growth arrest by activating synthesis of the alarmone guanosine tetraphosphate (ppGpp) by the enzyme RelA, a signal typically associated with amino acid starvation. We further demonstrate that chemically suppressing ppGpp synthesis with chloramphenicol relieves inhibition of DNA replication initiation and RNA synthesis in HipA-arrested cells and restores vulnerability to β-lactam antibiotics. HipA-arrested cells maintain glucose uptake and oxygen consumption and accumulate amino acids as a consequence of translational inhibition. We harness the active metabolism of HipA-arrested cells to provide a bacteriophage-resistant platform for the production of biotechnologically relevant compounds, which may represent an innovative solution to the costly problem of phage contamination in industrial fermentations.  相似文献   

16.
《Journal of Asia》2022,25(3):101949
Bacteria have a particular strategy to invade the host immune system by forming an undetectable dormant state that may resuscitate and cause disease even after inhabiting for years in a host body. Several mechanisms are known to be responsible for bacterial dormancy, among them the hipBA toxin-antitoxin (TA) system which was initially identified in Escherichia coli. Here we explore the genomic distribution and functional association of hipBA TA homologs from an entomopathogenic bacterium Xenorhabdus nematophila. This bacterium is a symbiotic model with the nematode Steinernema carpocapsae. We found that HipA toxin homologs are more closely related than HipB antitoxins and have satisfactory adenine (for HipA homologs) and nucleic acid (for HipB homologs) ligand partners with a typical TA interaction network that may promote the X. nematophila towards a stringent response to form the dormant state. Such homologs distribution is an inclusion in the current TA repertoire of X. nematophila.  相似文献   

17.
There is growing evidence that amorphous silica nanoparticles cause toxic effects on lung cells in vivo as well as in vitro and induce inflammatory processes. The phagocytosis of silica by alveolar macrophages potentiates these effects. To understand the underlying molecular mechanisms of silica toxicity, we applied a co-culture system including the immortal alveolar epithelial mouse cell line E10 and the macrophage cell line AMJ2-C11. In parallel we exposed precision-cut lung slices (lacking any blood cells as well as residual alveolar macrophages) of wild type and P2rx7−/− mice with or without AMJ2-C11 cells to silica nanoparticles. Exposure of E10 cells as well as slices of wild type mice resulted in an increase of typical alveolar epithelial type 1 cell proteins like T1α, caveolin-1 and -2 and PKC-β1, whereas the co-culture with AMJ2-C11 showed mostly a slightly lesser increase of these proteins. In P2rx7−/− mice most of these proteins were slightly decreased. ELISA analysis of the supernatant of wild type and P2rx7−/− mice precision-cut lung slices showed decreased amounts of IL-6 and TNF-α when incubated with nano-silica. Our findings indicate that alveolar macrophages influence the early inflammation of the lung and also that cell damaging reagents e.g. silica have a smaller impact on P2rx7−/− mice than on wild type mice. The co-culture system with an organotypic lung slice is a useful tool to study the role of alveolar macrophages during lung injury at the organoid level.  相似文献   

18.
Free-living microalgae from the dinoflagellate genus Karlodinium are known to form massive blooms in eutrophic coastal waters worldwide and are often associated with fish kills. Natural bloom populations, recently shown to consist of the two mixotrophic and toxic species Karlodinium armiger and Karlodinium veneficum have caused fast paralysis and mortality of finfish and copepods in the laboratory, and have been associated with reduced metazooplankton biomass in-situ. Here we show that a strain of K. armiger (K-0688) immobilises the common marine copepod Acartia tonsa in a density-dependent manner and collectively ingests the grazer to promote its own growth rate. In contrast, four strains of K. veneficum did not attack or affect the motility and survival of the copepods. Copepod immobilisation by the K. armiger strain was fast (within 15 min) and caused by attacks of swarming cells, likely through the transfer and action of a highly potent but uncharacterised neurotoxin. The copepods grazed and reproduced on a diet of K. armiger at densities below 1000, cells ml−1, but above 3500 cells ml−1 the mixotrophic dinoflagellates immobilised, fed on and killed the copepods. Switching the trophic role of the microalgae from prey to predator of copepods couples population growth to reduced grazing pressure, promoting the persistence of blooms at high densities. K. armiger also fed on three other metazoan organisms offered, suggesting that active predation by mixotrophic dinoflagellates may be directly involved in causing mortalities at several trophic levels in the marine food web.  相似文献   

19.
When growing populations of bacteria are confronted with bactericidal antibiotics, the vast majority of cells are killed, but subpopulations of genetically susceptible but phenotypically resistant bacteria survive. In accord with the prevailing view, these “persisters” are non- or slowly dividing cells randomly generated from the dominant population. Antibiotics enrich populations for pre-existing persisters but play no role in their generation. The results of recent studies with Escherichia coli suggest that at least one antibiotic, ciprofloxacin, can contribute to the generation of persisters. To more generally elucidate the role of antibiotics in the generation of and selection for persisters and the nature of persistence in general, we use mathematical models and experiments with Staphylococcus aureus (Newman) and the antibiotics ciprofloxacin, gentamicin, vancomycin, and oxacillin. Our results indicate that the level of persistence varies among these drugs and their concentrations, and there is considerable variation in this level among independent cultures and mixtures of independent cultures. A model that assumes that the rate of production of persisters is low and persisters grow slowly in the presence of antibiotics can account for these observations. As predicted by this model, pre-treatment with sub-MIC concentrations of antibiotics substantially increases the level of persistence to drugs other than those with which the population is pre-treated. Collectively, the results of this jointly theoretical and experimental study along with other observations support the hypothesis that persistence is the product of many different kinds of errors in cell replication that result in transient periods of non-replication and/or slowed metabolism by individual cells in growing populations. This Persistence as Stuff Happens (PaSH) hypothesis can account for the ubiquity of this phenomenon. Like mutation, persistence is inevitable rather than an evolved character. What evolved and have been identified are genes and processes that affect the frequency of persisters.  相似文献   

20.
Bacterial persisters are a small subpopulation of cells that exhibit multi-drug tolerance without genetic changes. Generally, persistence is associated with a dormant state in which the microbial cells are metabolically inactive. The bacterial response to unfavorable environmental conditions (heat, oxidative, acidic stress) induces the accumulation of aggregated proteins and enhances formation of persister cells in Escherichia coli cultures. We have found that methionine supplementation reduced the frequency of persisters at mild (37°C) and elevated (42°C) temperatures, as well as in the presence of acetate. Homoserine-o-succinyltransferase (MetA), the first enzyme in the methionine biosynthetic pathway, is prone to aggregation under many stress conditions, resulting in a methionine limitation in E. coli growth. Overexpression of MetA induced the greatest number of persisters at 42°C, which is correlated to an increased level of aggregated MetA. Substitution of the native metA gene on the E. coli K-12 WE chromosome by a mutant gene encoding the stabilized MetA led to reduction in persisters at the elevated temperature and in the presence of acetate, as well as lower aggregation of the mutated MetA. Decreased persister formation at 42°C was confirmed also in E. coli K-12 W3110 and a fast-growing WErph+ mutant harboring the stabilized MetA. Thus, this is the first study to demonstrate manipulation of persister frequency under stressful conditions by stabilization of a single aggregation-prone protein, MetA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号