首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The strategy for detecting oxygen, carbon monoxide, nitric oxide, and sulfides is predominantly through heme-based sensors utilizing either a globin domain or a PAS domain. Whereas PAS domains bind various cofactors, globins bind only heme. Globin-coupled sensors (GCSs) were first described as regulators of the aerotactic responses in Bacillus subtilis and Halobacterium salinarum. GCSs were also identified in diverse microorganisms that appear to have roles in regulating gene expression. Functional and evolutionary analyses of the GCSs, their protoglobin ancestor, and their relationship to the last universal common ancestor (LUCA) are discussed in the context of globin-based signal transduction.  相似文献   

2.
An organismal tree rooted in the bacterial branch and derived from a hyperthermophilic last common ancestor (LCA) is still widely assumed to represent the path followed by evolution from the most primeval cells to the three domains recognized among contemporary organisms: Bacteria, Archaea and Eucarya. In the past few years, however, more and more discrepancies between this pattern and individual protein trees have been brought to light. There has been an overall tendency to attribute these incongruities to widespread lateral gene transfer. However, recent developments, a reappraisal of earlier evidence and considerations of our own lead us to a quite different view. It would appear (i) that the role of lateral gene transfer was overemphasized in recent discussions of molecular phylogenies; (ii) that the LCA was probably a non-thermophilic protoeukaryote from which both Archaea and Bacteria emerged by reductive evolution but not as sister groups, in keeping with a current evolutionary scheme for the biosynthesis of membrane lipids; and (iii) that thermophilic Archaea may have been the first branch to diverge from the ancestral line.  相似文献   

3.
The last common bilaterian ancestor   总被引:11,自引:0,他引:11  
Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution.  相似文献   

4.
Analysis of extant proteomes has the potential of revealing how amino acid frequencies within proteins have evolved over biological time. Evidence is presented here that cysteine, tyrosine, and phenylalanine residues have substantially increased in frequency since the three primary lineages diverged more than three billion years ago. This inference was derived from a comparison of amino acid frequencies within conserved and non-conserved residues of a set of proteins dating to the last universal ancestor in the face of empirical knowledge of the relative mutability of these amino acids. The under-representation of these amino acids within last universal ancestor proteins relative to their modern descendants suggests their late introduction into the genetic code. Thus, it appears that extant ancient proteins contain evidence pertaining to early events in the formation of biological systems.  相似文献   

5.
Abstract

Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.  相似文献   

6.
Neumann N  Lundin D  Poole AM 《PloS one》2010,5(10):e13241

Background

The Nuclear Pore Complex (NPC) facilitates molecular trafficking between nucleus and cytoplasm and is an integral feature of the eukaryote cell. It exhibits eight-fold rotational symmetry and is comprised of approximately 30 nucleoporins (Nups) in different stoichiometries. Nups are broadly conserved between yeast, vertebrates and plants, but few have been identified among other major eukaryotic groups.

Methodology/Principal Findings

We screened for Nups across 60 eukaryote genomes and report that 19 Nups (spanning all major protein subcomplexes) are found in all eukaryote supergroups represented in our study (Opisthokonts, Amoebozoa, Viridiplantae, Chromalveolates and Excavates). Based on parsimony, between 23 and 26 of 31 Nups can be placed in LECA. Notably, they include central components of the anchoring system (Ndc1 and Gp210) indicating that the anchoring system did not evolve by convergence, as has previously been suggested. These results significantly extend earlier results and, importantly, unambiguously place a fully-fledged NPC in LECA. We also test the proposal that transmembrane Pom proteins in vertebrates and yeasts may account for their variant forms of mitosis (open mitoses in vertebrates, closed among yeasts). The distribution of homologues of vertebrate Pom121 and yeast Pom152 is not consistent with this suggestion, but the distribution of fungal Pom34 fits a scenario wherein it was integral to the evolution of closed mitosis in ascomycetes. We also report an updated screen for vesicle coating complexes, which share a common evolutionary origin with Nups, and can be traced back to LECA. Surprisingly, we find only three supergroup-level differences (one gain and two losses) between the constituents of COPI, COPII and Clathrin complexes.

Conclusions/Significance

Our results indicate that all major protein subcomplexes in the Nuclear Pore Complex are traceable to the Last Eukaryotic Common Ancestor (LECA). In contrast to previous screens, we demonstrate that our conclusions hold regardless of the position of the root of the eukaryote tree.  相似文献   

7.
Parasites of the genus Plasmodium infect all classes of amniotes (mammals, birds and reptiles) and display host specificity in their infections. It is therefore generally believed that Plasmodium parasites co-evolved intimately with their hosts. Here, we report that based on an evolutionary analysis using 22 genes in the nuclear genome, extant lineages of Plasmodium parasites originated roughly in the Oligocene epoch after the emergence of their hosts. This timing on the age of the common ancestor of extant Plasmodium parasites suggest the importance of host switches and lends support to the evolutionary scenario of a "malaria big bang" that was proposed based on the evolutionary analysis using the mitochondrial genome.  相似文献   

8.

Background

Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task.

Results

We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs). We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes) of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains). We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain) are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA) of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties indicates that, even with a gain penalty of 1 (equal weights assigned to a gain and a loss), the set of 572 genes assigned to LUCA might be nearly sufficient to sustain a functioning organism. Under this gain penalty value, the numbers of horizontal gene transfer and gene loss events are nearly identical. This result holds true for two alternative topologies of the species tree and even under random shuffling of the tree. Therefore, the results seem to be compatible with approximately equal likelihoods of HGT and gene loss in the evolution of prokaryotes.

Conclusions

The notion that gene loss and HGT are major aspects of prokaryotic evolution was supported by quantitative analysis of the mapping of the phyletic patterns of COGs onto a hypothetical species tree. Algorithms were developed for constructing parsimonious evolutionary scenarios, which include gene loss and gain events, for orthologous gene sets, given a species tree. This analysis shows, contrary to expectations, that the number of predicted HGT events that occurred during the evolution of prokaryotes might be approximately the same as the number of gene losses. The approach to the reconstruction of evolutionary scenarios employed here is conservative with regard to the detection of HGT because only patterns of gene presence-absence in sequenced genomes are taken into account. In reality, horizontal transfer might have contributed to the evolution of many other genes also, which makes it a dominant force in prokaryotic evolution.
  相似文献   

9.
10.
Summary Following on from earlier work in this laboratory the age of the last common ancestor (LCA) of man and chimpanzee was determined by an immunogenetic approach. The determinant patterns of 30 different plasma-protein entities were examined for homologues in human and chimpanzee blood. Comparison of these determinants revealed the number of immunologically relevant accepted mutations separating the two species.The proteins investigated in this way were then employed as representatives of their corresponding structural genes, since their polypeptide sequences are direct translations of the latter, i.e. actually two samples of the genomes in question were compared.The subsequent calculation of the ages of the LCAs made use of previously estimated values for other primate groups including gorilla, orang utan, several Old World monkeys, one New World monkey and one prosimian. We used the same algorithm as in the earlier investigation for the present analysis.The result indicates that man and chimpanzee shared a common ancestor 9.7 million years ago. This value is lower than those determined for any other species investigated in our laboratory, including gorilla and orang utan. This reaffirms the special position of the chimpanzee among other primates in relation to man, which is otherwise expressed in anatomical, physiological and psychological features. The value given is dependent on the reference point employed to introduce absolute units. The age of the eutherian common ancestor, assumed to be 70 million years, was used for the present study. Relative time scales, dividing the same time interval into 100 relative time units, are better suited to describe the results, but do not allow any comparison with morphologically derived data.The method employed and the implications of the results obtained are discussed in some detail.
Zusammenfassung In Fortführung früherer Untersuchungen unseres Arbeitskreises wurde das Alter des letzten gemeinsamen Vorfahren (LGV) des Menschen und des Schimpansen mit einer immungenetischen Technik bestimmt. Die Determinantenstrukturen von 30 Plasmaproteinen wurden jeweils für die Homologen der beiden Arten analysiert. Aus ihrem Vergleich ergibt sich die Zahl der immunologisch relevanten, akzeptierten Mutationen, in denen sich die beiden Species unterscheiden.Da die Polypeptidanteile der Proteine, welche die Determinanten tragen, direkte Übersetzungen der zugehörigen Strukturgene darstellen, ist die beschriebene Untersuchung zugleich eine solche einer Stichprobe der betreffenden Genome.Für die Berechnung des Alters des LGV von Mensch und Schimpanse wurden unsere früher erhaltenen Resultate für andere Primatengruppen zum Vergleich herangezogen. Diese umfaßten Gorilla und Orang Utan, einige Altweltaffen und je einen Neuwelt- und Halbaffen. Wir verwandten den gleichen Algorithmus wie früher beschrieben.Das so erhaltene Alter für den LGV von Mensch und Schimpanse beträgt 9,7 Millionen Jahre und ist damit kleiner als für jeden anderen bisher von uns untersuchten LGV des Menschen mit einer anderen Art; der Wert ist auch kleiner als für die Paare Mensch/Gorilla und Mensch/Orang Utan. Dieses Ergebnis bestätigt die besondere Stellung des Schimpansen unter allen Primaten zum Menschen, wie sie aus anatomischen, physiologischen und psychologischen Befunden erschlossen wurde. Zugleich werden die Möglichkeiten, welche die immungenetische Analyse in der Primatologie und Anthropologie eröffnet, erneut bestätigt.
  相似文献   

11.
The nature of the last universal ancestor to all extent cellular organisms and the rooting of the universal tree of life are fundamental questions which can now be addressed by molecular evolutionists. Several scenarios have been proposed during the last years, based on the phylogenies of ribosomal RNA and of duplicated proteins, which suggest that the last universal ancestor was either an RNA progenote or an hyperthermophilic prokaryote. We discuss these hypotheses in the light of new data on the evolution of DNA metabolizing enzymes and of contradictions between different protein phylogenies. We conclude that the last universal ancestor was a member of the DNA world already containing several DNA polymerases and DNA topoisomerases. Furthermore, we criticize current data which suggest that the rooting of the universal tree of life is located in the eubacterial branch and we conclude that both rooting the universal tree and the nature of the last universal ancestor are still open questions.  相似文献   

12.
13.
A comparative genomics analysis revealed 702 genes present in the bacterial Gram-negative core gene set (92 species analyzed) and 959 genes in the Gram-positive core gene set (93 species analyzed). Mycoplasma genitalium, which has the smallest known genome (517 genes) of a non-symbiont, was used in a three-way reciprocal analysis with the Gram-negative core genes and the Gram-positive core genes, and 151 common bacterial core genes were found. Of these 151 core genes, 39 were putative genes encoding the 30S and 50S ribosomal subunits, whilst among recognized cell division genes, only one gene, the major ftsZ, was present. In addition, 86 reciprocal matches were identified between the 151 common bacterial genes and a previously determined 2,723 common eukaryotic core gene set. An analysis was also done to optimize the threshold bit score used to declare that genes were homologous, and a bit score cutoff of 40 was selected.  相似文献   

14.
Modelling the behaviour of extinct hominins is essential in order to devise useful hypotheses of our species'' evolutionary origins for testing in the palaeontological and archaeological records. One approach is to model the last common ancestor (LCA) of living apes and humans, based on current ethological and ecological knowledge of our closest living relations. Such referential modelling is based on rigorous, ongoing field studies of the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). This paper reviews recent findings from nature, focusing on those with direct implications for hominin evolution, e.g. apes, using elementary technology to access basic resources such as food and water, or sheltering in caves or bathing as thermoregulatory adaptations. I give preference to studies that directly address key issues, such as whether stone artefacts are detectible before the Oldowan, based on the percussive technology of hammer and anvil use by living apes. Detailed comparative studies of chimpanzees living in varied habitats, from rainforest to savannah, reveal that some behavioural patterns are universal (e.g. shelter construction), while others show marked (e.g. extractive foraging) or nuanced (e.g. courtship) cross-populational variation. These findings allow us to distinguish between retained, primitive traits of the LCA versus derived ones in the human lineage.  相似文献   

15.
CvP-bias (difference between proportions of charged and polar non-charged amino acids) has been recognized as an efficient criterion to distinguish hyperthermophiles from mesothermophiles. By analyzing the CvP-biases of seven barophiles's proteomes, we reveal that this criterion still works for barophiles. As a result, CvP-bias criterion is applicable to disclosing some secrets in the lifestyles of the last common ancestor (LCA), no matter the LCA lived in deep sea or not, which is helpful to building a self-consistent model for the LCA.  相似文献   

16.
A model has been proposed suggesting that the tRNA molecule must have originated by direct duplication of an RNA hairpin structure [Di Giulio, M., 1992. On the origin of the transfer RNA molecule. J. Theor. Biol. 159, 199-214]. A non-monophyletic origin of this molecule has also been theorized [Di Giulio, M., 1999. The non-monophyletic origin of tRNA molecule. J. Theor. Biol. 197, 403-414]. In other words, the tRNA genes evolved only after the evolutionary stage of the last universal common ancestor (LUCA) through the assembly of two minigenes codifying for different RNA hairpin structures, which is what the exon theory of genes suggests when it is applied to the model of tRNA origin. Recent observations strongly corroborate this theorization because it has been found that some tRNA genes are completely separate in two minigenes codifying for the 5' and 3' halves of this molecule [Randau, L., et al., 2005a. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature 433, 537-541]. In this paper it is shown that these tRNA genes codifying for the 5' and 3' halves of this molecule are the ancestral form from which the tRNA genes continuously codifying for the complete tRNA molecule are thought to have evolved. This, together with the very existence of completely separate tRNA genes codifying for their 5' and 3' halves, proves a non-monophyletic origin for tRNA genes, as a monophyletic origin would exclude the existence of these genes which have, on the contrary, been observed. Here the polyphyletic origin of genes codifying for proteins is also suggested and discussed. Moreover, a hypothesis is advanced to suggest that the LUCA might have had a fragmented genome made up of RNA and the possibility that 'Paleokaryotes' may exist is outlined. Finally, the characteristic of the indivisibility of homology that these polyphyletic origins seem to remove at the sequence level is discussed.  相似文献   

17.
18.
In order to fully understand human evolutionary history through the use of molecular data, it is essential to include our closest relatives as a comparison. We provide here estimates of nucleotide diversity and effective population size of modern African ape species using data from several independent noncoding nuclear loci, and use these estimates to make predictions about the nature of the ancestral population that eventually gave rise to the living species of African apes, including humans. Chimpanzees, bonobos, and gorillas possess two to three times more nucleotide diversity than modern humans. We hypothesize that the last common ancestor (LCA) of these species had an effective population size more similar to modern apes than modern humans. In addition, estimated dates for the divergence of the Homo, Pan, and Gorilla lineages suggest that the LCA may have had stronger geographic structuring to its mtDNA than its nuclear DNA, perhaps indicative of strong female philopatry or a dispersal system analogous to gorillas, where females disperse only short distances from their natal group. Synthesizing different classes of data, and the inferences drawn from them, allows us to predict some of the genetic and demographic properties of the LCA of humans, chimpanzees, and gorillas.  相似文献   

19.
Genome analyses and the resolution of three-dimensional structures have provided evidence in recent years for hitherto unexpected family relationships between redox proteins of very diverse enzymes involved in bioenergetic electron transport. Many of these enzymes appear in fact to be constructed from only a limited set of building blocks. Phylogenetic analysis of selected units from this "redox enzyme construction kit" indicates an origin for several prominent bioenergetic enzymes that is very early, lying before the divergence of Bacteria and Archaea. Possible scenarios for the early evolution of selected complexes are proposed based on the obtained tree topologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号