首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A niche for adult neural stem cells   总被引:34,自引:0,他引:34  
The adult mammalian brain harbors multipotent stem cells, which reside and participate in specialized niches that support self-renewal and differentiation. The first cellular and molecular elements of the stem cell niche in the adult brain have been identified and include cell-cell interactions and somatic cell signaling, the vasculature, the extracellular matrix and basal lamina. Furthermore, regulation at the epigenetic level via chromatin modification and remodeling is an integral aspect of stem cell biology. Understanding the in vivo stem cell niche will provide a framework for the elucidation of stem cell function in the adult brain.  相似文献   

2.
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.  相似文献   

3.
Our recent studies revealed p57kip2 as an intrinsic regulator of late gliogenesis and demonstrated that in oligodendroglial precursor cells p57kip2 inhibition leads to accelerated maturation. Adult neural stem cells have been described as a source of glial progenitors; however, the underlying mechanisms of cell fate specification are still poorly understood. Here, we have investigated whether p57kip2 can influence early events of glial determination and differentiation. We found that Sox2/GFAP double-positive cells express p57kip2 in stem cell niches of the adult brain. Short-hairpin RNA-mediated suppression of p57kip2 in cultured adult neural stem cells was found to strongly reduce astroglial characteristics, while oligodendroglial precursor features were increased. Importantly, this anti-astrogenic effect of p57kip2 suppression dominated the bone morphogenetic protein-mediated promotion of astroglial differentiation. Moreover, we observed that in p57kip2 knockdown cells, the BMP antagonist chordin was induced. Finally, when p57kip2-suppressed stem cells were transplanted into the adult spinal cord, fewer GFAP-positive cells were generated and oligodendroglial markers were induced when compared with control cells, demonstrating an effect of in vivo relevance.  相似文献   

4.
5.
Disguising adult neural stem cells   总被引:2,自引:0,他引:2  
  相似文献   

6.
A specialized vascular niche for adult neural stem cells   总被引:5,自引:0,他引:5  
Stem cells reside in specialized niches that regulate their self-renewal and differentiation. The vasculature is emerging as an important component of stem cell niches. Here, we show that the adult subventricular zone (SVZ) neural stem cell niche contains an extensive planar vascular plexus that has specialized properties. Dividing stem cells and their transit-amplifying progeny are tightly apposed to SVZ blood vessels both during homeostasis and regeneration. They frequently contact the vasculature at sites that lack astrocyte endfeet and pericyte coverage, a modification of the blood-brain barrier unique to the SVZ. Moreover, regeneration often occurs at these sites. Finally, we find that circulating small molecules in the blood enter the SVZ. Thus, the vasculature is a key component of the adult SVZ neural stem cell niche, with SVZ stem cells and transit-amplifying cells uniquely poised to receive spatial cues and regulatory signals from diverse elements of the vascular system.  相似文献   

7.
Neural stem cells (NSCs) possess the ability to self-renew and to differentiate along neuronal and glial lineages. These processes are defined by the dynamic interplay between extracellular cues including cytokine signalling and intracellular programmes such as epigenetic modification. There is increasing evidence that epigenetic mechanisms involving, for example, changes in DNA methylation, histone modification and non-coding RNA expression are closely associated with fate specification of NSCs. These epigenetic alterations could provide coordinated systems for regulating gene expression at each step of neural cell differentiation. Here we review the roles of epigenetics in neural fate specification in the mammalian central nervous system.  相似文献   

8.
Gene delivery to adult neural stem cells   总被引:15,自引:0,他引:15  
Neural stem cells may present an ideal route for gene therapy as well as offer new possibilities for the replacement of neurons lost to injury or disease. However, it has proved difficult to express ectopic genes in stem cells. We report methods to introduce genes into adult neural stem cells using viral and nonviral vectors in vitro and in vivo. Adenoviral and VSV-G-pseudotyped retroviral vectors are more efficient than plasmid transfection or VSV-G lentiviral transduction in vitro. We further show that adult neural stem cells can be directed to a neuronal fate by ectopic expression of neurogenin 2 in vitro. Plasmids can be delivered in vivo when complexed with linear polyethyleneimine, and gene expression can be targeted specifically to neural stem or progenitor cells by the use of specific promoters. These techniques may be utilized both to study the function of various genes in the differentiation of neural stem cells to specific cell fates and, ultimately, for gene therapy or to generate specific differentiated progeny for cell transplantation.  相似文献   

9.
10.
Adult stem cells (SCs) exist in all tissues that promote tissue growth, regeneration, and healing throughout life. The SC niche in which they reside provides signals that direct them to proliferate, differentiate, or remain dormant; these factors include neighboring cells, the extracellular matrix, soluble molecules, and physical stimuli. In disease and aging states, stable or transitory changes in the microenvironment can directly cause SC activation or inhibition in tissue healing as well as functional regulation. Here, we discuss the microenvironmental regulation of the behavior of SC and focus on plasticity approaches by which various environmental factors can enhance the function of SCs and more effectively direct the fate of SCs.  相似文献   

11.
12.
13.
The role of stem cells has long been known in reproductive organs and various tissues including the haematopoietic system and skin. During the last decade, stem cells have also been identified in other organs, including the nervous system, both during development and in post-natal life. More recently, evidence has been presented that stem cells thought to be responsible for the generation of mature differentiated cells of one organ, such as haematopoietic stem cells, may have the ability to also differentiate across lineages and contribute to tissues other than haematopoietic cells, including neuronal tissue, suggesting that easily accessible stem cells sources may one day be useful in the therapy of ischaemic (stroke) and also degenerative diseases of the nervous system. Here, we will evaluate the validity of such claims based on a number of criteria we believe need to be fulfilled to definitively conclude that certain stem cells can give rise to functional neural cells that might be suitable for therapy of neural disorders.  相似文献   

14.
15.
16.
17.
The mechanisms governing the emergence of the earliest mammalian neural cells during development remain incompletely characterized. A default mechanism has been suggested to underlie neural fate acquisition; however, an instructive process has also been proposed. We used mouse embryonic stem (ES) cells to explore the fundamental issue of how an uncommitted, pluripotent mammalian cell will self-organize in the absence of extrinsic signals and what cellular fate will result. To assess this default state, ES cells were placed in conditions that minimize external influences. Individual ES cells were found to rapidly transition directly into neural cells, a process shown to be independent of suggested instructive factors (e.g., fibroblast growth factors). Further, we provide evidence that the default neural identity is that of a primitive neural stem cell (NSC). The exiguous conditions used to reveal the default state were found to present primitive NSCs with a survival challenge (limiting their persistence and proliferation), which could be mitigated by survival factors or genetic interference with apoptosis.  相似文献   

18.
19.
To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate-tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as at a single-cell level. A subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis.  相似文献   

20.
Recently, we reported a chemical approach to generate pluripotent stem cells from mouse fibroblasts. However, whether chemically induced pluripotent stem cells (CiPSCs) can be derived from other cell types remains to be demonstrated. Here, using lineage tracing, we first verify the generation of CiPSCs from fibroblasts. Next, we demonstrate that neural stem cells (NSCs) from the ectoderm and small intestinal epithelial cells (IECs) from the endoderm can be chemically reprogrammed into pluripotent stem cells. CiPSCs derived from NSCs and IECs resemble mouse embryonic stem cells in proliferation rate, global gene expression profile, epigenetic status, self-renewal and differentiation capacity, and germline transmission competency. Interestingly, the pluripotency gene Sall4 is expressed at the initial stage in the chemical reprogramming process from different cell types, and the same core small molecules are required for the reprogramming, suggesting conservation in the molecular mechanism underlying chemical reprogramming from these diverse cell types. Our analysis also shows that the use of these small molecules should be fine-tuned to meet the requirement of reprogramming from different cell types. Together, these findings demonstrate that full chemical reprogramming approach can be applied in cells of different tissue origins and suggest that chemical reprogramming is a promising strategy with the potential to be extended to more initial types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号