首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-cell interactions in developmental lysis of Myxococcus xanthus   总被引:16,自引:0,他引:16  
The developmental events of sporulation and fruiting body formation in the prokaryote Myxococcus xanthus are preceded by a stage of massive cell death. Two phenotypically complementable strains of M. xanthus defective in developmental lysis were identified from a group of conditional sporulation mutants. Mixture of the two lysis groups resulted in full complementation of lysis, sporulation, and fruiting body formation; efficient sporulation was observed only in strain mixtures where lysis was complemented. We have identified a cell-free extract from developing cells that phenotypically complemented lysis, sporulation, and fruiting body formation in one group of mutants; the active component of this extract appeared to be tightly cell associated. The effect of the cell-free extract could be replaced by exogenously supplied glucosamine or mannosamine.  相似文献   

2.
During the sporulation process of Saccharomyces cerevisiae, meiotic progression is accompanied by de novo formation of the prospore membrane inside the cell. However, it remains to be determined whether certain species of lipids are required for spore formation in yeast. In this study, we analyzed the requirement of the synthesis of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and ergosterol for spore formation using strains in which the synthesis of these lipids can be controlled. When synthesis of PE and PC was repressed, sporulation efficiency decreased. This suggests that synthesis of these phospholipids is vital to proper sporulation. In addition, sporulation was also impaired in cells with a lowered sterol content, raising the possibility that sterol content is also important for spore formation.  相似文献   

3.
During the sporulation process of Saccharomyces cerevisiae, meiotic progression is accompanied by de novo formation of the prospore membrane inside the cell. However, it remains to be determined whether certain species of lipids are required for spore formation in yeast. In this study, we analyzed the requirement of the synthesis of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and ergosterol for spore formation using strains in which the synthesis of these lipids can be controlled. When synthesis of PE and PC was repressed, sporulation efficiency decreased. This suggests that synthesis of these phospholipids is vital to proper sporulation. In addition, sporulation was also impaired in cells with a lowered sterol content, raising the possibility that sterol content is also important for spore formation.  相似文献   

4.
Entry into sporulation in Bacillus subtilis is characterized by the formation of a polar septum, which asymmetrically divides the developing cell into forespore (the smaller cell) and mother cell compartments, and by migration of replication origin regions to extreme opposite poles of the cell. Here we show that polar septation is closely correlated with movement of replication origins to the extreme poles of the cell. Replication origin regions were visualized by the use of a cassette of tandem copies of lacO that had been inserted in the chromosome near the origin of replication and decorated with green fluorescent protein-LacI. The results showed that extreme polar placement of replication origin regions is not under sporulation control and occurred in stationary phase under conditions under which entry into sporulation was prevented. On the other hand, the formation of a polar septum, which is under sporulation control, was almost invariably associated with the presence of a replication origin region in the forespore. Moreover, cells in which the polar placement of origin regions was perturbed by deletion of the gene (smc) for the structural maintenance of chromosomes (SMC) protein were impaired in polar division. A small proportion ( approximately 1%) of the mutant cells were able to undergo asymmetric division, but the forespore compartment of these exceptional cells was generally observed to contain a replication origin region. Immunofluorescence microscopy experiments indicated that the block in polar division caused by the absence of SMC occurred at or prior to the step of bipolar Z-ring formation by the cell division protein FtsZ. A model is discussed in which polar division is under the dual control of sporulation and an event associated with the placement of a replication origin at the cell pole.  相似文献   

5.
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation‐specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell‐ and developmental stage‐specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σH and σA, during sporulation. The results suggest that σH is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σA plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth.  相似文献   

6.
Bacillus subtilis penicillin-binding protein PBP1 has been implicated in cell division. We show here that a PBP1 knockout strain is affected in the formation of the asymmetric sporulation septum and that green fluorescent protein-PBP1 localizes to the sporulation septum. Localization of PBP1 to the vegetative septum is dependent on various cell division proteins. This study proves that PBP1 forms part of the B. subtilis cell division machinery.  相似文献   

7.
The ultrastructure of endospore formation in Bacillus macerans ATCC 8244 is characterized by the examination of thin sections of cells grown synchronously in a defined medium. For the most part, sporulation in this organism proceeds as described in other Bacillus species. However, unusually extensive mesosomal involvement occurs during the early stages of sporulation, through the completion of engulfment. A large mesosome is associated with spore septum formation and a portion of this mesosome is included in the developing forespore. As engulfment continues, the forespore mesosome moves to the apex of the cell and participates in the completion of the double forespore membrane. This participation is morphologically similar to mesosome involvement in division and spore septation and seems to comprise a second sporal septation process. Based on this study, it is suggested that the mesosome functions to facilitate the "fusion" of membranes thought to occur during cell division and sporulation.  相似文献   

8.
In Myxococcus xanthus, morphogenesis of multicellular fruiting bodies and sporulation are co-ordinated temporally and spatially. csgA mutants fail to synthesize the cell surface-associated C-signal and are unable to aggregate and sporulate. We report that csgA encodes two proteins, a 25 kDa species corresponding to full-length CsgA protein and a 17 kDa species similar in size to C-factor protein, which has been shown previously to have C-signal activity. By systematically varying the accumulation of the csgA proteins, we show that overproduction of the csgA proteins results in premature aggregation and sporulation, uncoupling of the two events and the formation of small fruiting bodies, whereas reduced synthesis of the csgA proteins causes delayed aggregation, reduced sporulation and the formation of large fruiting bodies. These results show that C-signal induces aggregation as well as sporulation, and that an ordered increase in the level of C-signalling during development is essential for the spatial co-ordination of these events. The results support a quantitative model, in which aggregation and sporulation are induced at distinct threshold levels of C-signalling. In this model, the two events are temporally co-ordinated by the regulated increase in C-signalling levels during development. The contact-dependent C-signal transmission mechanism allows the spatial co-ordination of aggregation and sporulation by coupling cell position and signalling levels.  相似文献   

9.
We have isolated mutations that block sporulation after formation of the polar septum in Bacillus subtilis. These mutations were mapped to the two genes of a new locus, spoIIS. Inactivation of the second gene, spoIISB, decreases sporulation efficiency by 4 orders of magnitude. Inactivation of the first gene, spoIISA, has no effect on sporulation but it fully restores sporulation of a spoIISB null mutant, indicating that SpoIISB is required only to counteract the negative effect of SpoIISA on sporulation. An internal promoter ensures the synthesis of an excess of SpoIISB over SpoIISA during exponential growth and sporulation. In the absence of SpoIISB, the sporulating cells show lethal damage of their envelope shortly after asymmetric septation, a defect that can be corrected by synthesizing SpoIISB only in the mother cell. However, forced synthesis of SpoIISA in exponentially growing cells or in the forespore leads to the same type of morphological damage and to cell death. In both cases protection against the killing effect of SpoIISA can be provided by simultaneous synthesis of SpoIISB. The spoIIS locus is unique to B. subtilis, and since it is completely dispensable for sporulation its physiological role remains elusive.  相似文献   

10.
A thermosensitive sporulation mutant of Bacillus subtilis containing a mutation in the secY gene was isolated and characterized. No asymmetric septum specific to the sporulation was detected by electron microscopy at the nonpermissive temperature, indicating that the block occurred at a very early stage of sporulation. Furthermore, competence development in the mutant cell was affected even at the sporulation-proficient temperature. It is assumed that the SecY protein of B. subtilis has multiple roles both in the regulation of spore formation and in stationary-phase-associated phenomena.  相似文献   

11.
Synchronous Growth and Sporulation of Bacillus megaterium   总被引:3,自引:2,他引:1       下载免费PDF全文
Filtration of late log-phase cultures of Bacillus megaterium ATCC 19213 grown on defined sucrose salts medium (SS) or SS plus glutamate medium (SSG) through nine layers of Whatman no. 40 filter paper in a fritted-glass disc Büchner funnel resulted in filtrates containing cells which showed synchronous growth and proceeded to sporulation. SS cells completed one synchronous division after filtration; sporulation ensued after the cessation of growth. SSG cells completed two synchronous divisions and sporulation occurred during the second division. A high degree of synchrony of vegetative growth of SSG cells was evident by the stepwise pattern of growth, by the doubling of cell numbers at each division, the high division index, and by the rapid formation of sporulation cell types and homogeneity of cell types in the filtered cultures when compared with asynchronous cultures. Because the described system gives both good growth and sporulation synchrony, the method should be useful in delineating early events in sporulation and their regulation.  相似文献   

12.
Summary A minimal medium was used to investigate the triggers regulating the initiation of solvent production and differentiation in Clostridium acetobutylicum P262. The accumulation of acid end-products caused the inhibition of cell division and the initiation of solvent production and cell differentiation. Initiation only occurred with a narrow pH range. Glucose or ammonium limited cultures failed to achieve the necessary threshold of acid end-products and solvent production and differentiation were not initiated. The addition of acid end-products or ammonium to cultures containing suboptimal levels of glucose or nitrogen respectively, enhanced solvent production. Resuspension of cells in media containing the threshold level of acid end-products and residual glucose induced endospore formation. Glucose or ammonium limitation did not induce sporulation and there was a requirement for glucose and ammonium during solventogenesis and endospore formation. Initiation of solvent production and clostridial stage formation were essential for sporulation. The induction of endospore formation in C. acetobutylicum P262 differs from that in the aerobic endospore forming bacteria where sporulation is initiated by nutrient starvation.  相似文献   

13.
To elucidate the process of asymmetric division during sporulation of Bacillus subtilis, we have measured changes in cell cycle parameters during the transition from vegetative growth to sporulation. Because the propensity of B. subtilis to grow in chains of cells precludes the use of automated cell-scanning devices, we have developed a fluorescence microscopic method for analyzing cell cycle parameters in individual cells. From the results obtained, and measurements of DNA replication fork elongation rates and the escape time of sporulation from the inhibition of DNA replication, we have derived a detailed time scale for the early morphological events of sporulation which is mainly consistent with the cell cycle changes expected following nutritional downshift. The previously postulated sensitive stage in the DNA replication cycle, beyond which the cell is unable to sporulate without a new cell cycle, could represent a point in the division cycle at which the starved cell cannot avoid attaining the initiation mass for DNA replication and thus embarking on another round of the cell cycle. The final cell cycle event, formation of the asymmetric spore septum, occurs at about the time in the cell cycle at which the uninduced cell would have divided centrally, in keeping with the view that spore septation is a modified version of vegetative division.  相似文献   

14.
In fission yeast Schizosaccharomyces pombe, a diploid mother cell differentiates into an ascus containing four haploid ascospores following meiotic nuclear divisions, through a process called sporulation. Several meiosis-specific proteins of fission yeast have been identified to play essential roles in meiotic progression and sporulation. We report here an unexpected function of mitotic spindle checkpoint protein Dma1 in proper spore formation. Consistent with its function in sporulation, expression of dma1(+) is up-regulated during meiosis I and II. We showed that Dma1 localizes to the SPB during meiosis and the maintenance of this localization at meiosis II depends on septation initiation network (SIN) scaffold proteins Sid4 and Cdc11. Cells lacking Dma1 display defects associated with sporulation but not nuclear division, leading frequently to formation of asci with fewer spores. Our genetic analyses support the notion that Dma1 functions in parallel with the meiosis-specific Sid2-related protein kinase Slk1/Mug27 and the SIN signaling during sporulation, possibly through regulating proper forespore membrane assembly. Our studies therefore revealed a novel function of Dma1 in regulating sporulation in fission yeast.  相似文献   

15.
16.
During spore formation in Bacillus subtilis, cell division occurs at the cell pole and is believed to require essentially the same division machinery as vegetative division. Intriguingly, although the cell division protein DivIB is not required for vegetative division at low temperatures, it is essential for efficient sporulation under these conditions. We show here that at low temperatures in the absence of DivIB, formation of the polar septum during sporulation is delayed and less efficient. Furthermore, the polar septa that are complete are abnormally thick, containing more peptidoglycan than a normal polar septum. These results show that DivIB is specifically required for the efficient and correct formation of a polar septum. This suggests that DivIB is required for the modification of sporulation septal peptidoglycan, raising the possibility that DivIB either regulates hydrolysis of polar septal peptidoglycan or is a hydrolase itself. We also show that, despite the significant number of completed polar septa that form in this mutant, it is unable to undergo engulfment. Instead, hydrolysis of the peptidoglycan within the polar septum, which occurs during the early stages of engulfment, is incomplete, producing a similar phenotype to that of mutants defective in the production of sporulation-specific septal peptidoglycan hydrolases. We propose a role for DivIB in sporulation-specific peptidoglycan remodelling or its regulation during polar septation and engulfment.  相似文献   

17.
In the cyanobacteriumAnabaena torulosa, sporulation occurred even during the logarithmic growth phase. Sporulation was initiated by differentiation of the vegetative cell on one side, adjoining the heterocyst followed by differentiation of the vegetative cell on the other side. Subsequently, spores were differentiated alternately on either side to form spore strings. The sequence of sporulation supports the previous notion that a gradient of spore maturation exists in cyanobacteria and also indicates that the gradient is manifested unequally on either side of heterocysts. Sporulation was absent or negligible in a minerally enriched medium but ocurred readily in a minimal medium. The extent of sporulation was inversely related to phosphate concentration. Sporulation was enhanced at higher temperature. Incandescent light, but not fluorescent light, greatly stimulated sporulation suggesting possible involvement of red light in spore differentiation. Addition of filtrate, from 5 to 8 day old cultures, to freshly inoculatedA. torulosa greatly enhanced sporulation indicating the influence of extracellular products in spore formation.  相似文献   

18.
Glucosamine (GlcN), which has previously been shown to rescue fruiting body formation, lysis, and sporulation in a developmental mutant (G. Janssen and M. Dworkin, Dev. Biol. 112:194-202, 1985), induced lysis in vegetative and developing wild-type cells and inhibited fruiting body formation. It also resulted in a transient, intracellular increase in the concentration of glycerol, a known sporulation inducer, and sporulation of the surviving cells. Phospholipase activity, which was shown to be normally developmentally regulated, increased 7.6-fold after treatment of vegetative cells with 50 mM GlcN. Likewise, autocidal activity, which normally increased 18 to 24 h after the initiation of development, increased 20% when vegetative or developing cells were exposed to GlcN. Two mutants resistant to GlcN-induced lysis (MD1021 and MD1022) were isolated and showed neither an increase in autocide production nor an increase in phospholipase activity in response to added GlcN. MD1021 was developmentally deficient, and GlcN rescued fruiting body formation as well as phospholipase activity and autocide production. We propose that GlcN exerts its lytic effect by regulating the activity of phospholipase enzymes that release autocides, compounds that are believed to be responsible for developmental autolysis. GlcN-induced sporulation was found to depend on several factors: the initial cell density, the amount of lysis induced by GlcN, and the presence of tan-phase variants. An initial cell density of greater than 2 x 10(5) cells per ml was required to support GlcN-induced sporulation, and sporulation did not occur unless 50 to 75% of these cells had lysed. Mutants that were resistant to GlcN-induced lysis also did not sporulate in the presence of GlcN. The effects of GlcN on developing cells depended on the concentration of GlcN added; the addition of low concentrations of GlcN resulted in enhancement of sporulation, while higher concentrations resulted in the inhibition of sporulation. The ultrastructure of GlcN-induced spores resembled that of spores induced by the exogenous addition of glycerol, in contrast to spores isolated from mature fruiting bodies. A model by which GlcN may regulate both lysis and sporulation is presented.  相似文献   

19.
Bacillus subtilis, a Gram-positive bacterium commonly found in soil, is an excellent model organism for the study of basic cell processes, such as cell division and cell differentiation, called sporulation. In B. subtilis the essential genetic information is carried on a single circular chromosome, the correct segregation of which is crucial for both vegetative growth and sporulation. The proper completion of life cycle requires each daughter cell to obtain identical genetic information. The consequences of inaccurate chromosome segregation can lead to formation of anucleate cells, cells with two chromosomes, or cells with incomplete chromosomes. Although bacteria miss the classical eukaryotic mitotic apparatus, the chromosome segregation is undeniably an active process tightly connected to other cell processes as DNA replication and compaction. To fully understand the chromosome segregation, it is necessary to study this process in a wider context and to examine the role of different proteins at various cell life cycle stages. The life cycle of B. subtilis is characteristic by its specific cell differentiation process where, two slightly different segregation mechanisms exist, specialized in vegetative growth and in sporulation.  相似文献   

20.
Carbohydrate Accumulation During the Sporulation of Yeast   总被引:14,自引:8,他引:6       下载免费PDF全文
The sporulation of Saccharomyces cerevisiae is characterized by an increase in dry weight without cell division. At least 67% of the dry weight increase is due to the synthesis of cellular carbohydrates consisting of trehalose and insoluble components. The insoluble carbohydrates accumulate only during the period preceding the actual formation of visible ascospores. The trehalose accumulates throughout the sporulation cycle and is specifically localized in the ascospore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号