首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Each year, malaria parasites cause more than 500 million infections and 0.5-3 million deaths worldwide, mostly among children under five living in sub-Saharan Africa. In contrast with several viral and bacterial pathogens, which elicit long-lived immunity after a primary infection, these parasites require several years of continuous exposure to confer partial, usually non-sterilizing immune protection. One of the main obstacles to the acquisition of antimalarial immunity is the high degree of antigenic diversity in potential target antigens, which enables parasites to evade immune responses elicited by past exposure to variant forms of the same antigen. Allelic polymorphism, the existence of genetically stable alternative forms of antigen-coding genes, originates from nucleotide replacement mutations and intragenic recombination. In addition, malaria parasites display antigenic variation, whereby a clonal lineage of parasites expresses successively alternate forms of an antigen without changes in genotype. This review focuses on molecular and evolutionary processes that promote allelic polymorphism and antigenic variation in natural malaria parasite populations and their implications for naturally acquired immunity and vaccine development.  相似文献   

2.
Malaria kills approximately 1-2 million people every year, mostly in sub-Saharan Africa and in Asia. These deaths are at the most severe end of a scale of pathologies affecting approximately 500 million people per year. Much of the pathogenesis of malaria is caused by inappropriate or excessive immune responses mounted by the body to eliminate malaria parasites. In this review, we examine the evidence that immunopathology is responsible for malaria disease in the context of what we have learnt from animal models of malaria. In particular, we look in detail at the processes involved in endothelial cell damage leading to syndromes such as cerebral malaria, as well as generalised systemic manifestations such as anaemia, cachexia and problems with thermoregulation of the body. We also consider malaria in light of the variation of the severity of disease observed among people, and discuss the contribution from animal models to our understanding of this variation. Finally, we discuss some of the implications of immunopathology, and of host and parasite genetic variation, for the design and implementation of anti-malarial vaccines.  相似文献   

3.
Current scenario of malaria in India   总被引:4,自引:0,他引:4  
Sharma VP 《Parassitologia》1999,41(1-3):349-353
The Indian National Malaria Eradication Programme (NMEP) is reporting 2.5 to 3 million malaria cases, and about 1,000 malaria deaths annually. Malaria in the northeastern states is stable and in the peninsular India unstable. There are six major and three minor malaria vectors, of which Anopheles culicifacies transmits malaria in rural areas and An. stephensi in the towns. Other vectors are of local importance. Plasmodium vivax is the dominant infection and accounts for 60-65% cases whereas P. falciparum contributes 30-35% cases. Field operations to control malaria are impeded by resistance and/or exophilic vector behavior, parasite resistance to antimalarial drugs, operational problems in spraying, failure to search breeding of mosquitoes at weekly intervals, staff shortages and financial constraints. Resurgent malaria invaded new ecotypes created by green revolution, industrial growth and urban development resulting in paradigm shift towards man-made malaria. NMEP has launched a world bank-assisted enhanced malaria control project with primary emphasis to protect 62.2 million high risk population in 7 states.  相似文献   

4.
Cameroon, a west-central African country with a ~20 million population, is commonly regarded as ‘Africa in miniature’ due to the extensive biological and cultural diversities of whole Africa being present in a single-country setting. This country is inhabited by ancestral human lineages in unique eco-climatic conditions and diverse topography. Over 90% Cameroonians are at risk of malaria infection, and ~41% have at least one episode of malaria each year. Historically, the rate of malaria infection in Cameroon has fluctuated over the years; the number of cases was about 2 million in 2010 and 2011. The Cameroonian malaria control programme faces an uphill task due to high prevalence of multidrug-resistant parasites and insecticide-resistant malaria vectors. Above all, continued human migration from the rural to urban areas as well as population exchange with adjoining countries, high rate of ecological instabilities caused by deforestation, poor housing, lack of proper sanitation and drainage system might have resulted in the recent increase in incidences of malaria and other vector-borne diseases in Cameroon. The available data on eco-environmental variability and intricate malaria epidemiology in Cameroon reflect the situation in the whole of Africa, and warrant the need for in-depth study by using modern surveillance tools for meaningful basic understanding of the malaria triangle (host-parasite-vector-environment).  相似文献   

5.
6.
Malaria has been a very strong selection pressure in recent human evolution, particularly in Africa. Of the one million deaths per year due to malaria, more than 90% are in sub-Saharan Africa, a region with high levels of genetic variation and population substructure. However, there have been few studies of nucleotide variation at genetic loci that are relevant to malaria susceptibility across geographically and genetically diverse ethnic groups in Africa. Invasion of erythrocytes by Plasmodium falciparum parasites is central to the pathology of malaria. Glycophorin A (GYPA) and B (GYPB), which determine MN and Ss blood types, are two major receptors that are expressed on erythrocyte surfaces and interact with parasite ligands. We analyzed nucleotide diversity of the glycophorin gene family in 15 African populations with different levels of malaria exposure. High levels of nucleotide diversity and gene conversion were found at these genes. We observed divergent patterns of genetic variation between these duplicated genes and between different extracellular domains of GYPA. Specifically, we identified fixed adaptive changes at exons 3-4 of GYPA. By contrast, we observed an allele frequency spectrum skewed toward a significant excess of intermediate-frequency alleles at GYPA exon 2 in many populations; the degree of spectrum distortion is correlated with malaria exposure, possibly because of the joint effects of gene conversion and balancing selection. We also identified a haplotype causing three amino acid changes in the extracellular domain of glycophorin B. This haplotype might have evolved adaptively in five populations with high exposure to malaria.  相似文献   

7.
Although the malaria parasite was discovered more than 120 years ago, it is only during the past 20 years, following the cloning of malaria genes, that we have been able to think rationally about vaccine design and development. Effective vaccines for malaria could interrupt the life cycle of the parasite at different stages in the human host or in the mosquito. The purpose of this review is to outline the challenges we face in developing a vaccine that will limit growth of the parasite during the stage within red blood cells--the stage responsible for all the symptoms and pathology of malaria. More than 15 vaccine trials have either been completed or are in progress, and many more are planned. Success in current trials could lead to a vaccine capable of saving more than 2 million lives per year.  相似文献   

8.
During its Malaria Eradication Programme (1958-1964) Sri Lanka spectacularly reduced its malaria incidence from around half a million per year to 17. Regrettably, this magnificent achievement could not be maintained, and malaria once again reached epidemic proportions in some areas. Of particular concern however, has been the emergence of new foci of malaria around the hill capital, Kandy, discussed here by Manel Wijesundera. The new outbreaks seem intimately related to hydrological changes brought about by major irrigation and hydroelectric schemes on the Mahaweli river. The priority for such schemes is not, of course, to flush out the pools where mosquito larvae thrive, but to divert water for irrigation and power generation. In parallel, human migration between malaria endemic and non-endemic areas - stimulated by the resettlement required by the dam reservoirs - has contributed to increased malaria transmission. In a sense therefore, this story is a classic of health impact overlooked in favour of agricultural and industrial development. But whereas most documented cases relate to extensive flooding causing an increase in vector breeding sites and so exacerbating disease transmission, this story is just the opposite. Here, it is reduction in water flow that has promoted an increase in vector breeding.  相似文献   

9.
Despite more than 100 years since Laveran described plasmodium species and Ross confirmed that they were transmitted by female anopheline mosquitoes, malaria remains a leading cause of morbidity and mortality worldwide. Although the areas where transmission takes place have reduced, and they are by now confined to the inter tropical areas, the number of people living at risk has grown to about 3 billion, and is expected to go on increasing. Not only does malaria cause around 500 million cases every year, and between 1 and 3 million deaths, but it also carries a huge burden that impairs the economic and social development of large parts of the planet. The failed attempt to eradicate malaria gave way to the control policy that was followed by a huge resurgence of malaria during the late 70s and 80s. Together with the emergence and spread of resistance to chloroquine and the weak health infrastructure in many of the endemic countries, particularly in Africa, the malaria situation worsened worldwide. The last decade of the 20th century was witness to the international community becoming increasingly aware of the unacceptable situation that the burden of malaria represented to large parts of the world. Renewed efforts to describe the problem, design and evaluate new control strategies, design and develop new drugs, better understand the biology of the parasite and the immunity it induces in the human host, develop candidate vaccines, together with new financial support constitute renewed hope that may lead to new trends in global health.  相似文献   

10.
BackgroundThe RTS,S/AS01 vaccine against Plasmodium falciparum malaria infection completed phase III trials in 2014 and demonstrated efficacy against clinical malaria of approximately 36% over 4 years for a 4-dose schedule in children aged 5–17 months. Pilot vaccine implementation has recently begun in 3 African countries. If the pilots demonstrate both a positive health impact and resolve remaining safety concerns, wider roll-out could be recommended from 2021 onwards. Vaccine demand may, however, outstrip initial supply. We sought to identify where vaccine introduction should be prioritised to maximise public health impact under a range of supply constraints using mathematical modelling.Methods and findingsUsing a mathematical model of P. falciparum malaria transmission and RTS,S vaccine impact, we estimated the clinical cases and deaths averted in children aged 0–5 years in sub-Saharan Africa under 2 scenarios for vaccine coverage (100% and realistic) and 2 scenarios for other interventions (current coverage and World Health Organization [WHO] Global Technical Strategy targets). We used a prioritisation algorithm to identify potential allocative efficiency gains from prioritising vaccine allocation among countries or administrative units to maximise cases or deaths averted. If malaria burden at introduction is similar to current levels—assuming realistic vaccine coverage and country-level prioritisation in areas with parasite prevalence >10%—we estimate that 4.3 million malaria cases (95% credible interval [CrI] 2.8–6.8 million) and 22,000 deaths (95% CrI 11,000–35,000) in children younger than 5 years could be averted annually at a dose constraint of 30 million. This decreases to 3.0 million cases (95% CrI 2.0–4.7 million) and 14,000 deaths (95% CrI 7,000–23,000) at a dose constraint of 20 million, and increases to 6.6 million cases (95% CrI 4.2–10.8 million) and 38,000 deaths (95% CrI 18,000–61,000) at a dose constraint of 60 million. At 100% vaccine coverage, these impact estimates increase to 5.2 million cases (95% CrI 3.5–8.2 million) and 27,000 deaths (95% CrI 14,000–43,000), 3.9 million cases (95% CrI 2.7–6.0 million) and 19,000 deaths (95% CrI 10,000–30,000), and 10.0 million cases (95% CrI 6.7–15.7 million) and 51,000 deaths (95% CrI 25,000–82,000), respectively. Under realistic vaccine coverage, if the vaccine is prioritised sub-nationally, 5.3 million cases (95% CrI 3.5–8.2 million) and 24,000 deaths (95% CrI 12,000–38,000) could be averted at a dose constraint of 30 million. Furthermore, sub-national prioritisation would allow introduction in almost double the number of countries compared to national prioritisation (21 versus 11). If vaccine introduction is prioritised in the 3 pilot countries (Ghana, Kenya, and Malawi), health impact would be reduced, but this effect becomes less substantial (change of <5%) if 50 million or more doses are available. We did not account for within-country variation in vaccine coverage, and the optimisation was based on a single outcome measure, therefore this study should be used to understand overall trends rather than guide country-specific allocation.ConclusionsThese results suggest that the impact of constraints in vaccine supply on the public health impact of the RTS,S malaria vaccine could be reduced by introducing the vaccine at the sub-national level and prioritising countries with the highest malaria incidence.

Alexandra Hogan and colleagues explore strategies to optimize vaccine allocation for maximum public health benefit in the face of potential supply constraints.  相似文献   

11.
Malaria a global pandemic has engulfed nearly 0.63 million people globally. It is high time that a cure for malaria is required to stop its ever increasing menace. Our commentary discusses the advent and contribution of genetic algorithm (GA) in the drug discovery efforts towards developing cure for malaria. GAs are computational models of Darwinian evolution, ideally capture and mimic the principles of genetic variation and natural selection to evolve good solutions through multiple iterations on the space of all possible candidate solutions, called the search space, to a given optimization problem. Herein we will discuss the applications, advantages, disadvantages and future directions of GA with respect to malaria.  相似文献   

12.
Plasmodium vivax infects 130-435 million of the 2.6 billion people living at risk of infection. Recent studies suggest that vivax malaria can become lethal in a similar way to severe falciparum malaria. First-line therapies remain unchanged after 50 years. Despite evidence of failing chloroquine efficacy, little work has assessed the problem or explored alternative therapies. Primaquine treatment, the only therapeutic option against relapse, might also be failing. No licensed primary chemoprophylactic agent protects travelers from relapse. Misdiagnosis of species now affects clinical decisions resulting in inadequate therapy for P. falciparum and P. vivax. All of these factors demonstrate the lack of research on P. vivax.  相似文献   

13.
While mortality from malaria continues to decline globally, incidence rates in many countries are rising. Within countries, spatial and temporal patterns of malaria vary across communities due to many different physical and social environmental factors. To identify those areas most suitable for malaria elimination or targeted control interventions, we used Bayesian models to estimate the spatiotemporal variation of malaria risk, rates, and trends to determine areas of high or low malaria burden compared to their geographical neighbours. We present a methodology using Bayesian hierarchical models with a Markov Chain Monte Carlo (MCMC) based inference to fit a generalised linear mixed model with a conditional autoregressive structure. We modelled clusters of similar spatiotemporal trends in malaria risk, using trend functions with constrained shapes and visualised high and low burden districts using a multi-criterion index derived by combining spatiotemporal risk, rates and trends of districts in Zambia. Our results indicate that over 3 million people in Zambia live in high-burden districts with either high mortality burden or high incidence burden coupled with an increasing trend over 16 years (2000 to 2015) for all age, under-five and over-five cohorts. Approximately 1.6 million people live in high-incidence burden areas alone. Using our method, we have developed a platform that can enable malaria programs in countries like Zambia to target those high-burden areas with intensive control measures while at the same time pursue malaria elimination efforts in all other areas. Our method enhances conventional approaches and measures to identify those districts which had higher rates and increasing trends and risk. This study provides a method and a means that can help policy makers evaluate intervention impact over time and adopt appropriate geographically targeted strategies that address the issues of both high-burden areas, through intensive control approaches, and low-burden areas, via specific elimination programs.  相似文献   

14.
Malaria is the most important parasitic disease worldwide, responsible for an estimated 225 million clinical cases each year. It mainly affects children, pregnant women and non-immune adults who frequently die victims of cerebral manifestations and anaemia. Although the contribution of the American continent to the global malaria burden is only around 1.2 million clinical cases annually, there are 170 million inhabitants living at risk of malaria transmission in this region. On the African continent, where Plasmodium falciparum is the most prevalent human malaria parasite, anaemia is responsible for about half of the malaria-related deaths. Conversely, in Latin America (LA), malaria-related anaemia appears to be uncommon, though there is a limited knowledge about its real prevalence. This may be partially explained by several factors, including that the overall malaria burden in LA is significantly lower than that of Africa, that Plasmodium vivax, the predominant Plasmodium species in the region, appears to display a different clinical spectrus and most likely because better health services in LA prevent the development of severe malaria cases. With the aim of contributing to the understanding of the real importance of malaria-related anaemia in LA, we discuss here a revision of the available literature on the subject and the usefulness of experimental animal models, including New World monkeys, particularly for the study of the mechanisms involved in the pathogenesis of malaria.  相似文献   

15.
India contributes about 70% of malaria in the South East Asian Region of WHO. Although annually India reports about two million cases and 1000 deaths attributable to malaria, there is an increasing trend in the proportion of Plasmodium falciparum as the agent. There exists heterogeneity and variability in the risk of malaria transmission between and within the states of the country as many ecotypes/paradigms of malaria have been recognized. The pattern of clinical presentation of severe malaria has also changed and while multi-organ failure is more frequently observed in falciparum malaria, there are reports of vivax malaria presenting with severe manifestations. The high burden populations are ethnic tribes living in the forested pockets of the states like Orissa, Jharkhand, Madhya Pradesh, Chhattisgarh and the North Eastern states which contribute bulk of morbidity and mortality due to malaria in the country. Drug resistance, insecticide resistance, lack of knowledge of actual disease burden along with new paradigms of malaria pose a challenge for malaria control in the country. Considering the existing gaps in reported and estimated morbidity and mortality, need for estimation of true burden of malaria has been stressed. Administrative, financial, technical and operational challenges faced by the national programme have been elucidated. Approaches and priorities that may be helpful in tackling serious issues confronting malaria programme have been outlined.  相似文献   

16.
Each year approximately 50 million women living in malaria endemic areas become pregnant and are at risk of the adverse health impact of malaria. Approximately half of them live in sub-Saharan Africa and most of them in areas of intense falciparum transmission. The increased susceptibility to malaria of pregnant women has long been recognized. Although some progress has been accomplished in recent years, resulting in the identification of intermittent preventive treatment (IPTp) and insecticide treated nets (ITNs) as key strategies to control malaria in pregnancy in Africa, much work needs to be done to control malaria effectively in this high at risk group. There are still many gaps in knowledge that need to be addressed: from the biological mechanism(s) that explains the increased susceptibility during pregnancy, the most effective control measures in different transmission areas and the best drugs for case management.  相似文献   

17.
Although vertebrate herbivory has existed on land for about 300 million years, the grazingadaptation, principally developed in mammals, did not appear until the middle Cenozoic about 30 million years ago. Paleontological evidence indicates that grazing mammals diversified at the time of the spread of grasslands. Recently revised fossil calibrations reveal that the grazing mammal guild originated during the early Miocene in South America about 10-15 million years earlier than it did during the late Miocene in the northern hemisphere. Carbon isotopic analyses of extinct grazers' teeth reveal that this guild originated predominantly in C(3) terrestrial ecosystems. The present-day distribution of C(3) and C(4) grasslands evolved on the global ecological landscape since the late Miocene, after about 7 million years ago.  相似文献   

18.
Malaria is possibly the most serious infectious disease of humans, infecting 5-10% of the world's population, with 300-600 million clinical cases and more than 2 million deaths annually. Adaptive immune responses in the host limit the clinical impact of infection and provide partial, but incomplete, protection against pathogen replication; however, these complex immunological reactions can contribute to disease and fatalities. So, appropriate regulation of immune responses to malaria lies at the heart of the host-parasite balance and has consequences for global public health. This Review article addresses the innate and adaptive immune mechanisms elicited during malaria that either cause or prevent disease and fatalities, and it considers the implications for vaccine design.  相似文献   

19.
Phylogeny and molecular evolution in primates   总被引:7,自引:0,他引:7  
Statistical methods for estimating the branching order and the branching dates from DNA sequence data, taking into account of the rate variation among lineages, are reviewed. An application of the methods to data from primates suggests that chimpanzee is the closest relative of man, and further suggests that these two species diverged about 4-5 million years ago.  相似文献   

20.
Malaria continues to be one of the most serious and widespread parasitic diseases, still occurring in over 100 countries despite concentrated efforts to eradicate it from many regions. Sixty-one countries now report their malaria cases to the WHO, and the latest analysis of these figures' shows little improvement in the overall problem during the last 15 years. Some countries, notably India and China, continue to report downward trends, but the problem continues to deteriorate in rural areas where intense economic development is taking place, particularly in Asia and the Americas. In 1984, 5.3 million cases of malaria were reported to the WHO. This is believed to represent but a small fraction of the total number because, for example, 38 of the tropical African countries do not report their malaria cases. Estimates based on the degree of malaria endemicity suggest a total incidence o f around 100 million cases annually. Chloroquine-resistant falciporum malaria has been confirmed in more than 40 countries, often showing cross-resistance to other drugs, and attempts to combat resistance using combination drugs have led to disturbing reports of side-effects as well as multidrug resistance. Vector control is also impaired in many areas due to insecticide resistance. Faced with these problems, we asked Dr Walther Wernsdorfer, head of the WHO Malaria Action Programme, what is the current WHO philosophy of malaria chemotherapy and prophylaxis?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号