首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-oestrogens (AEs) are currently used for treating hormone-dependent breast cancers. They specifically bind to oestrogen receptors (ERs) and inhibit their transactivation capacity. However, ERs are present in various other tissues in which AEs may have either a beneficial or detrimental action. AE administration via systems targeting breast tumours may be an important therapeutic improvement. Thus, several biodegradable drug delivery systems containing either “mixed” (4-hydroxytamoxifen - 4-HT) or “pure” (RU 58668 - RU) AEs were prepared. Liposomes and nanospheres (NS, composed of non-toxic and biodegradable lipids and poly(d,l-lactic acid) incorporated up to 1 and 0.5 mM AE, respectively. Nanocapsules (NCs) in which an oily core solubilises the AE incorporated no more than 0.02 mM of the drug. PEG-functionalised nanoparticles survived longer in plasma and had better controlled release of the drug. The small size of the vectors (100–250 nm) was compatible with their extravasation through the discontinuous endothelium of tumour vasculature, allowing their accumulation in MCF-7 cell xenografts and leading to a prolonged exposure of the tumour to AEs. In these tumours and in MCF-7/ras xenografts, RU-NS and RU-NC (6.5 mg/kg/week and 0.27 mg/kg/week, respectively, doses at which free RU had a very weak effect), both inhibited tumour growth. Entrapped RU significantly induced involution of tumours and strongly induced apoptosis in tumour cells, concomitantly with inhibiting tumour angiogenesis. 4-HT-nanoparticles also arrest oestradiol-induced tumour growth, inducing apoptosis and inhibiting angiogenesis. However, unlike RU-nanoparticles, they did not promote ER subtype loss in tumour cells. Subcutaneous administration of both RU- and 4-HT-NS in MCF-7 xenografts strongly arrested tumour growth for prolonged periods and RUNS decreased the number of tumour epithelial cells. Analysis of the proteins involved in cell cycle proliferation and apoptosis confirmed that RU-nanoparticles were more efficient than 4-HT-nanoparticles. Their lack of toxicity and high anti-tumour potency that affects only tumour cells in the xenograft models mean these AE-loaded colloidal systems are a breakthrough in hormone-dependent breast cancer treatment.  相似文献   

2.
Intracranial tumours such as brain gliomas and pituitary adenomas pose a challenging area of research for the development of gene therapy strategies, both from the point of view of the severity of the diseases, to the physiological implication of gene delivery into the central nervous system and pituitary gland. On the one hand, brain gliomas are very malignant tumours, with a life expectancy of six months to a year at the most after the time of diagnosis, in spite of advances in treatment modalities which involve chemotherapy, surgery and radiotherapy. Gene therapy for these tumours is therefore a very attractive therapeutic modality which due to the severity of the disease is already in clinical trials. On the other hand, pituitary tumours are usually benign, and in most cases, treatment is successful. Nevertheless, there are some instances, especially with the macroadenomas and some invasive tumours in which treatment fails. Gene therapy strategies for these adenomas therefore needs to progress substantially in terms of safety, adverse side effects and physiological impact on the normal pituitary gland before clinical implementation. In this paper, we will review gene delivery systems both viral and non-viral and several therapeutic strategies which could be implemented for the treatment of these diseases. These include cytotoxic approaches both conditional and direct, immune-stimulatory strategies, anti-angiogenic strategies and approaches which harness pro-apoptotic and tumour suppressor gene targets. We will also review the models which are currently available in which these gene therapy strategies can be tested experimentally. This new therapeutic modality holds enormous promise, but we still need substantial improvements both from the delivery, efficacy and safety stand points before it can become a clinical reality.  相似文献   

3.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   

4.
The evidence considered here reinforces the conclusion that T-cell responses to tumours involve complex cellular interactions. An attempt to summarize some of these interactions is shown. This emphasizes that not only are the interactions between the effector cell populations complicated, but that the target cell surface is also subject to variation and modification as a result of the immune response. A feature that also emerges from these studies is that most cells apparently responding to or infiltrating a tumour do not necessarily participate in its destruction, and it is in this area that experimental tumour systems have particular value. This also perhaps explains the preoccupation of experimentalists with the identification of 'the' effector cell crucial to tumour rejection. However, there is heterogeneity between systems in terms of the type of rejection response induced, but a logical basis for this heterogeneity is not established. If experimental studies could define the nature of the immune response generated by a tumour in the context of the biological features of the tumour itself, this could lead to the prediction of the immunogenicity and potential for induction of a rejection response for that tumor. Clearly, experimental tumour systems do not provide an exact reflection of the situation with human tumours. However, they may provide systems that illuminate particular aspects of the human response, and give precedents to guide the interpretation of data derived from human systems. This form of assessment is still at an early stage, but developments in the experimental field should provide a framework for the development and exploitation of T-cell responses to tumours.  相似文献   

5.
The cucurbit[n]uril (CB[n]) family of macrocycles has been shown to have potential in drug delivery where they are able to provide physical and chemical stability to drugs, improve drug solubility, control drug release and mask the taste of drugs. Cisplatin is a small molecule platinum-based anticancer drug that has severe dose-limiting side-effects. Cisplatin forms a host-guest complex with cucurbit[7]uril (cisplatin@CB[7]) with the platinum atom and both chlorido ligands located inside the macrocycle, with binding stabilised by four hydrogen bonds (2.15-2.44 ?). Whilst CB[7] has no effect on the in vitro cytotoxicity of cisplatin in the human ovarian carcinoma cell line A2780 and its cisplatin-resistant sub-lines A2780/cp70 and MCP1, there is a significant effect on in vivo cytotoxicity using human tumour xenografts. Cisplatin@CB[7] is just as effective on A2780 tumours compared with free cisplatin, and in the cisplatin-resistant A2780/cp70 tumours cisplatin@CB[7] markedly slows tumour growth. The ability of cisplatin@CB[7] to overcome resistance in vivo appears to be a pharmacokinetic effect. Whilst the peak plasma level and tissue distribution are the same for cisplatin@CB[7] and free cisplatin, the total concentration of circulating cisplatin@CB[7] over a period of 24 hours is significantly higher than for free cisplatin when administered at the equivalent dose. The results provide the first example of overcoming drug resistance via a purely pharmacokinetic effect rather than drug design or better tumour targeting, and demonstrate that in vitro assays are no longer as important in screening advanced systems of drug delivery.  相似文献   

6.
Autophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour-immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN-I) innate immune sensing pathway. Autophagy in suppressive tumour-infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti-tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context-dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.  相似文献   

7.
Regional delivery of chemotherapy to a tumour or tumour-bearing region has pharmacokinetic advantages over the systemic route. The applications of an animal model for regional drug delivery are outlined. The technique for intra-arterial infusion in the rabbit hindlimb is described. The use of the implantable VX2 rabbit carcinoma as a model for solid human tumours may be studied by this method. Pharmacokinetic data obtained with the model allow comparison between systemic and regional routes of delivery. The distribution of the cancerostatic plant toxin ricin following regional delivery has been investigated using this experimental model.  相似文献   

8.
After completion of the Arabidopsis genome-sequencing programme, crown galls induced by Agrobacterium tumefaciens may become a model system to study plant tumour development. The molecular mechanisms of nutrient supply to support tumour growth and development are still unknown. In this study, we have identified a unique profile of Shaker-like potassium channels in agrobacteria-induced Arabidopsis tumours. Comparing the gene expression pattern of rapidly growing tumours with that of non-infected tissues, we found the suppression of shoot in favour of root-specific K+ channels. Among these, the upregulation of AKT1 and AtKC1 and the suppression of AKT2/3 and GORK were most pronounced. As a consequence, K+ uptake and accumulation were elevated in the tumour (163 mm) compared to control tissues (92 mm). Patch clamp studies on tumour protoplasts identified a population expressing the electrical properties of the AKT1 K+ channel. Furthermore, plants lacking a functional AKT1 or the AKT2/3 phloem K+ channel gene did not support tumour growth. This indicates that the delivery of potassium by AKT1 and the direction of assimilates, triggered by AKT2/3, are essential for tumour growth.  相似文献   

9.
Use of bacteria in anti-cancer therapies   总被引:1,自引:0,他引:1  
While a number of valid molecular targets have been discovered for tumours over the past decade, finding an effective way of delivering therapeutic genes specifically to tumours has proved more problematic. A variety of viral and non-viral delivery vehicles have been developed and applied in anti-cancer gene therapies. However, these suffer from either inefficient and/or short-lived gene transfer to target cells, instability in the bloodstream and inadequate tumour targeting. Recently, various types of non-pathogenic obligate anaerobic and facultative anaerobic bacteria have been shown to infiltrate and selectively replicate within solid tumours when delivered systemically. This has prompted the development of cancer gene therapy protocols that use such bacteria as gene delivery vehicles. Here, we review the evidence for the success of these in pre-clinical models and clinical trials, as single modality treatments and in combination with conventional cancer therapies.  相似文献   

10.
The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metasasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate reduction in primary subcutaneous tumour growth. Overall, this study demonstrates the potential for Nk4 gene therapy of metastatic tumours, when delivered by AAV or non-viral methods.  相似文献   

11.
The rate of cell loss in irradiated RIF-1, EMT6, KHJJ, B16 and KHT tumours was studied using the 125IUdR loss technique. Administration of 125IUdR preceded localized tumour irradiation by 2 days. Loss of tumour radioactivity was measured for 6–8 days after irradiation. the blood flow to some tumours was occluded during, and for 30 min following, injection of the label to measure the amount of radioactivity entering the tumour as a result of reutilization of label from the gut epithelia and influx of labelled host cells. Irradiation did not significantly alter the amount of radioactivity entering these clamped tumours during the 8–10 days after injection of 125IUdR. This permitted comparison of irradiated and control groups based on the loss of radioactivity from the non-occluded tumours. Irradiation of RIF-1, EMT6, KHJJ or B16 tumours with doses of 600, 1400, 2400 or 4400 rads produced no significant increase in the rate of loss of tumour radioactivity. This suggested that, in the population of labelled cells, cell lysis following irradiation proceeded slowly. In contrast, KHT tumours showed a significant increase in loss rate following each radiation dose, although the increase was dose-independent. In all tumour systems, the constant rate of cell loss after radiation appeared to coincide with published reports of tumour growth responses after irradiation. the present data suggest that the manner of expression of radiation-induced cell killing results from the cellular proliferative status, i.e. whether a cell is cycling or non-cycling.  相似文献   

12.
PV1 is an endothelial‐specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have treated pancreatic tumour‐bearing mice by single‐dose intratumoural delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 down‐regulation by shRNAs inhibits the growth of established tumours derived from two different human pancreatic adenocarcinoma cell lines (AsPC‐1 and BxPC‐3). The effect observed is because of down‐regulation of PV1 in the tumour endothelial cells of host origin, PV1 being specifically expressed in tumour vascular endothelial cells and not in cancer or other stromal cells. There are no differences in vascular density of tumours treated or not with PV1 shRNA, and gain and loss of function of PV1 in endothelial cells does not modify either their proliferation or migration, suggesting that tumour angiogenesis is not impaired. Together, our data argue that down‐regulation of PV1 in tumour endothelial cells results in the inhibition of tumour growth via a mechanism different from inhibiting angiogenesis.  相似文献   

13.
In vivo bioluminescence imaging is becoming a very important tool for the study of a variety of cellular and molecular events or disease processes in living systems. In vivo bioluminescence imaging is based on the detection of light emitted from within an animal. The light is generated as a product of the luciferase-luciferin reaction taking place in a cell. In this study, we implanted mice with tumour cells expressing either a high or a low level of luciferase. In vivo bioluminescence imaging was used to follow tumour progression. Repeated luciferin injection and imaging of high and low luciferase-expressing tumours was performed. While low luciferase-expressing tumours grew similarly to vector controls, growth of the high luciferase-expressing tumours was severely inhibited. The observation that a high level of luciferase expression will inhibit tumour cell growth when an animal is subjected to serial in vivo bioluminescence imaging is potentially an important factor in designing these types of studies.  相似文献   

14.
Many patients with various types of cancers have already by the time of presentation, micrometastases in their tissues and are left after treatment in a minimal residual disease state [Am J Gastroenterol 95(12), 2000]. To prevent tumour recurrence these patients require a systemic based therapy, but current modalities are limited by toxicity or lack of efficacy. We have previously reported that immune reactivity to the primary tumour is an important regulator of micrometastases and determinant of prognosis. This suggests that recruitment of specific anti-tumour mechanisms within the primary tumour could be used advantageously for tumour control as either primary or neo-adjuvant treatments. Recently, we have focused on methods of stimulating immune eradication of solid tumours and minimal residual disease using gene therapy approaches. Gene therapy is now a realistic prospect and a number of delivery approaches have been explored, including the use of viral and non-viral vectors. Non-viral vectors have received significant attention since, in spite of their relative delivery inefficiency, they may be safer and have greater potential for delivery of larger genetic units. By in vivo electroporation of the primary tumour with plasmid expressing GM-CSF and B7-1, we aim to stimulate immune eradication of the treated tumour and associated metastases. In this symposium report, we describe an effective gene based approach for cancer immunotherapy by inducing cytokine and immune co-stimulatory molecule expression by the growing cells of the primary tumour using a plasmid electroporation gene delivery strategy. We discuss the potential for enhancement of this therapy by its application as a neoadjuvant to surgical excision and by its use in combination with suppressor T cell depletion.This article is a symposium paper from the Annual Meeting of the “International Society for Cell and Gene Therapy of Cancer”, held in Shenzhen, China, on 9–11 December 2005.  相似文献   

15.
Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.  相似文献   

16.
Delivery systems for tumour targeting fall into two basic categories: drug conjugate systems, in which individual drug molecules are chemically modified to target them directly to the tumour; and carrier-based systems, in which the drug or gene is first packaged non-covalently into a synthetic carrier that is then targeted to the tumour. In both cases, the objective is to maximise exposure of the target cells to the drug yet minimise side effects that result from nonspecific toxicity in normal tissues. The creation of such dose differentials is based on phenotypic differences between the tumour and the rest of the body. However, although a wide range of such changes have been linked to the transformation of normal cells to cancer cells, no single common feature exists to allow unambiguous targeting to the tumour. In addition, the tumour microenvironment creates physical barriers that significantly impair transport within the tumour. It is therefore important to match the delivery requirements of the drug to the capabilities of the delivery system. In this review, a brief overview is given of the underlying concepts and principles that help guide the development of such tumour-targeting strategies.  相似文献   

17.
Medulloblastoma and neuroblastoma are malignant embryonal childhood tumours of the central and peripheral nervous systems, respectively, which often show poor clinical prognosis due to resistance to current chemotherapy. Both these tumours have deficient apoptotic machineries adopted from their respective progenitor cells. This review focuses on the specific background for tumour development, and highlights biological pathways that present potential targets for novel therapeutic approaches.  相似文献   

18.
There are good arguments for suggesting that two seminal papers published 50 years ago can be taken as the beginning of modern tumour immunology. These papers by R. Baldwin, “Immunity to transplanted tumour: the effect of tumour extracts on the growth of homologous tumours in rats” and “Immunity to methylcholanthrene-induced tumours in inbred rats following atrophy and regression of the implanted tumours” (Br J Cancer 9:646–51 and 652–657, 1955) showed that once tumours are established, they and their products can be recognised by the adaptive immune system and rejected. However, the tumour normally co-evolves with immunity, like a parasite, rather than being suddenly introduced as in these, and many other, experimental models. Dynamics of this co-evolution are illustrated by findings that inflammation enhances tumorigenicity, yet is important to enable T cells to respond properly to tumour antigen and exert anti-tumour effects. The important thing is to maintain the balance between effective anti-tumour immunity and tumour escape and/or stimulatory mechanisms. Tumours almost always co-exist with immune defence systems over extended periods and interact chronically with T cells. The effect of this is potentially similar to other situations of chronic antigenic stress, particularly lifelong persistent virus infection, most strikingly, CMV infection. The questions briefly explored in this symposium paper are what happens when T lymphocyte clones are chronically stimulated by antigen which is not or cannot be eliminated? What are the similarities and differences between chronic antigenic stimulation by tumour antigen versus CMV antigen? What can we learn in one system which may illuminate the other?  相似文献   

19.
Abstract. Motivated by the recent development of highly specific agents for brain tumours, we develop a mathematical model of the spatio-temporal dynamics of a brain tumour that receives an infusion of a highly specific cytotoxic agent (e.g. IL-4-PE, a cytotoxin comprised of IL-4 and a mutated form of Pseudomonas exotoxin). We derive an approximate but accurate mathematical formula for the tumour cure probability in terms of the tumour characteristics (size at time of detection, proliferation rate, diffusion coefficient), drug design (killing rate, loss rate and convection constants for tumour and tissue), and drug delivery (infusion rate, infusion duration). Our results suggest that high specificity is necessary but not sufficient to cure malignant gliomas; a nondispersed spatial profile of pretreatment tumour cells and/or good drug penetration are also required. The most important levers to improve tumour cure appear to be earlier detection, higher infusion rate, lower drug clearance rate and better convection into tumour, but not tissue. In contrast, the tumour cure probability is less sensitive to a longer infusion duration and enhancements in drug potency and drug specificity.  相似文献   

20.
Liposomes have found clinical application in cancer therapy in the delivery of cytostatic agents. As a result of the targeted delivery of these toxic molecules to the tumour cells coupled to avoidance of toxicity-sensitive tissues, the therapeutic window is widened. Over the past years the focus of cancer therapy has shifted towards the stromal cells that are present in the tumour. It appears that clinically relevant tumours have acquired the ability to modulate the microenvironment in such a way that a chronic pro-inflammatory and pro-angiogenic state is achieved that contributes to invasion and metastasis and continued proliferation. Over the past years, liposomal formulations have been designed that target key stromal cell types that contribute to tumour growth. At the same time, many promising cell types have not been targeted yet and most of the studies employ drugs that aim at depleting stromal cells rather than modulating their activity towards an anti-tumour phenotype. In this review these target cell types will be addressed. Complementing these targeted formulations with the appropriate drugs to optimally suppress tumour-promoting signals while preserving anti-tumour action will be the challenge for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号