首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vascular endothelial cell (VEC) differentiation from primate embryonic stem (ES) cells has critical problems: low differentiation efficiencies (<2%) and/or subculture incapability. We report a novel feeder-free culture method for high efficiency production of subculturable VECs from cynomolgus monkey ES cells. Spheres, which were generated from ES cells in the presence of cytokine cocktail, were cultured on gelatin-coated plates. Cobblestone-shaped cells spread out after a few days, which were followed by an emergence of a sac-like structure containing hematopoietic cells. All adherent cells including sac walls cells and surrounding cobblestone cells expressed vascular endothelial cadherin (VE-cadherin) at intercellular junctions. Subculture of these cells resulted in a generation of homogeneous spindle-shaped population bearing cord-forming activities and a uniform acetylated low density lipoprotein-uptaking capacity with von Willbrand factor and endothelial nitric oxide synthetase expressions. They were freeze-thaw-tolerable and subculturable up to eight passages. Co-existence of pericytes or immature ES cells was ruled out. When introduced in a collagen sponge plug implanted intraperitoneally in mice, ES-derived cells recruited into neovascularity. Although percentages of surface VE-cadherin-positive population varied from 20% to 80% as assessed by flow cytometry, the surface VE-cadherin-negative population showed intracellular VE-cadherin expression and mature functions, as we call it as atypical VECs. When sorted, the surface VE-cadherin-positive population expanded as almost pure (>90%) VE-cadherin/PECAM-1-positive VECs by 160-fold after five passages. Thus, our system provides pure production of functional, subculturable and freeze-thaw-tolerable VECs, including atypical VECs, from primate ES cells.  相似文献   

2.
We have established an innovative culture system for the efficient differentiation of hematopoietic and endothelial cells from primate embryonic stem (ES) cells without feeder cells, embryoid bodies, or cell-sorting processes. After several days' culture in murine stromal OP9-conditioned medium supplemented with a cytokine cocktail on collagen-coated dishes, ES cells differentiated into a very unique population of cells with a finger-like appearance. These finger-like cells were positive for mesodermal and/or hemangioblastic markers of kinase insert domain receptor (KDR) and T-cell acute lymphocytic leukemia 1 (TAL1), and produced large amounts of protein tyrosine phosphatase, receptor type, C-positive hematopoietic cells. These hematopoietic cells showed the morphology of immature hematopoietic cells, formed blast cell colonies with high efficiency, and were positive for CD34 antigen, KDR, TAL1, and GATA binding protein 1, suggesting that these blast cells are equivalent to the multipotent hematopoietic progenitor cells. Moreover, they produced functional macrophages in murine stromal MS-5-conditioned medium and primitive erythroblasts in the presence of erythropoietin. The finger-like cells, putative mesodermal progenitors and/or hemangioblasts, actively proliferated and repetitively produced hematopoietic cells as long as they were maintained on the original dish. By contrast, the majority of the finger-like cells differentiated into endothelial cells with specific markers and specific functions after transfer to fresh dishes, indicating that conditions established in the original dish supported the proliferation and hematopoietic differentiation of the finger-like cells. Our method provides a highly controllable culture protocol for repetitive production of hematopoietic and endothelial cells from feeder-free monolayer cultivation of primate ES cells.  相似文献   

3.
In this paper, we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin(-)CD34(+)CD43(+)CD45(+) multipotent progenitors. The protocol comprises three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells; (ii) short-term expansion of multipotent myeloid progenitors with a high dose of granulocyte-macrophage colony-stimulating factor; and (iii) directed differentiation of myeloid progenitors into neutrophils, eosinophils, dendritic cells, Langerhans cells, macrophages and osteoclasts. The generation of multipotent hematopoietic progenitors from hPSCs requires 9 d of culture and an additional 2 d to expand myeloid progenitors. Differentiation of myeloid progenitors into mature myeloid cells requires an additional 5-19 d of culture with cytokines, depending on the cell type.  相似文献   

4.
5.
One of the most important issues in stem cell research is to understand the regulatory mechanisms responsible for their differentiation. An extensive understanding of mechanism underlying the process of differentiation is crucial in order to prompt stem cells to perform a particular function after differentiation. To elucidate the molecular mechanisms responsible for the hematopoietic differentiation of embryonic stem cells (ESCs), we investigated murine ES cells for the presence of hematopoietic lineage markers as well as Wnt signaling pathway during treatments with different cytokines alone or in combination with another. Here we report that Wnt/beta-catenin signaling is down-regulated in hematopoietic differentiation of murine ES cells. We also found that differentiation induced by the interleukin-3, interleukin-6, and erythropoietin combinations resulted in high expression of CD3e, CD11b, CD45R/B220, Ly-6G, and TER-119 in differentiated ES cells. A high expression of beta-catenin was observed in two undifferentiated ES cell lines. Gene and protein expression analysis revealed that the members downstream of Wnt in this signaling pathway including beta-catenin, GSK-3beta, Axin, and TCF4 were significantly down-regulated as ES cells differentiated into hematopoietic progenitors. Our results show that the Wnt/beta-catenin signaling pathway plays a role in the hematopoietic differentiation of murine ESCs and also may support beta-catenin as a crucial factor in the maintenance of ES cells in their undifferentiated state.  相似文献   

6.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

7.
间充质干细胞体外调控骨髓造血前体细胞向单核系分化   总被引:3,自引:0,他引:3  
研究间充质干细胞(MSC)能否在体外调控造血。体外分离培养人骨髓来源的MSC,RT-PCR检测其造血生长因子的表达,并以其为饲养层细胞,接种骨髓单个核细胞(MNC),观察生长情况,并通过形态学观察和流式细胞术分析,鉴定细胞来源和分化方向。结果显示,MSC构成性表达SCF、Flt3L和M-CSF,不表达C-CSF和GM-CSF,在骨髓MNC和MSC共培养体系中,大约2周左右可以看到大量的圆形细胞粘附在梭型MSC上生长,细胞胞体为圆形,胞浆较丰富,胞核为圆形、半月型或肾型,部分细胞呈典型的单核细胞形态,流式细胞术分析该类细胞表达CDl4,不表达CDl5、CD41、glycophorin A、CD5和CDl9。表明不需要添加外源性造血生长因子,间充质干细胞能在体外调控骨髓造血前体细胞向单核系分化,其定向分化可能与MSC分泌造血生长因子及MSC与造血细胞间相互作用有关。  相似文献   

8.
Controlled differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into cells that resemble adult mesenchymal stem cells (MSCs) is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM) supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.  相似文献   

9.
10.
Embryonic stem (ES) cells have indefinite self-renewal ability and pluripotency, and can provide a novel cell source for tissue engineering applications. In this study, a murine CCE ES cell line was used to derive hematopoietic cells in a 3-D fibrous matrix. The 3-D matrix was found to maintain the phenotypes of undifferentiated ES cells as indicated by alkaline phosphatase (ALP) activity and stage specific embryonic antigen-1 (SSEA-1) expression. In hematopoietic differentiation, cells from 3-D culture exhibited similar cell cycle distribution and SSEA-1 expression to those in the initial cell population. The Oct-4 expression was significantly down-regulated, which indicated the occurrence of differentiation, although the level was slightly higher than that in Petri dish culture. The expression of c-kit, cell surface marker for hematopoietic progenitor, was higher in the 3-D culture, suggesting a better-directed hematopoietic differentiation. Cells in the 3-D matrix tended to form large aggregates associated with fibers. For large-scale processes, a perfusion bioreactor can be used for both maintenance and differentiation cultures. As compared to the static culture, a higher growth rate and final cell density were resulted from the perfusion bioreactor due to better control of the reactor environment. At the same time, the differentiation capacity of ES cells was preserved in the perfusion culture. The ES cell culture in the fibrous matrix thus can be used as a 3-D model system to study effects of extracellular environment and associated physico-chemical parameters on ES cell maintenance and differentiation.  相似文献   

11.
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring aspects of embryoid body (EB) formation efficiency and cell proliferation, and by tracking development of a specific differentiated tissue type-blood-using functional (colony-forming cell) and phenotypic (Flk-1 and CD34 expression) assays. We report that individual murine ES cells form EBs with an efficiency of 42 +/- 9%, but this value is rarely obtained because of EB aggregation-a process whereby two or more individual ES cells or EBs fuse to form a single, larger cell aggregate. Regardless of whether EBs were generated from a single ES cell in methylcellulose or liquid suspension culture, or aggregates of ES cells in hanging drop culture, they grew to a similar maximum cell number of 28,000 +/- 9,000 cells per EB. Among the three methods for EB generation in suspension culture there were no differences in the kinetics or frequency of hematopoietic development. Thus, initiating EBs with a single ES cell and preventing EB aggregation should allow for maximum yield of differentiated cells in the EB system. EB differentiation cultures were also compared to attached differentiation culture using the same outputs. Attached colonies were not similarly limited in cell number; however, hematopoietic development in attached culture was impaired. The percentage of early Flk-1 and CD34 expressing cells was dramatically lower than in EBs cultured in suspension, whereas hematopoietic colony formation was almost completely inhibited. These results provide a foundation for development of efficient, scalable bioprocesses for ES cell differentiation, and inform novel methods for the production of hematopoietic tissues.  相似文献   

12.
Genetic manipulation of human embryonic stem cells (hESCs) is instrumental for tracing lineage commitment and to studying human development. Here we used hematopoietic-specific Wiskott-Aldrich syndrome gene (WAS)-promoter driven lentiviral vectors (LVs) to achieve highly specific gene expression in hESCs-derived hematopoietic cells. We first demonstrated that endogenous WAS gene was not expressed in undifferentiated hESCs but was evident in hemogenic progenitors (CD45(-)CD31(+)CD34(+)) and hematopoietic cells (CD45(+)). Accordingly, WAS-promoter driven LVs were unable to express the eGFP transgene in undifferentiated hESCs. eGFP(+) cells only appeared after embryoid body (EB) hematopoietic differentiation. The phenotypic analysis of the eGFP(+) cells showed marking of different subpopulations at different days of differentiation. At days 10-15, AWE LVs tag hemogenic and hematopoietic progenitors cells (CD45(-)CD31(+)CD34(dim) and CD45(+)CD31(+)CD34(dim)) emerging from hESCs and at day 22 its expression became restricted to mature hematopoietic cells (CD45(+)CD33(+)). Surprisingly, at day 10 of differentiation, the AWE vector also marked CD45(-)CD31(low/-)CD34(-) cells, a population that disappeared at later stages of differentiation. We showed that the eGFP(+)CD45(-)CD31(+) population generate 5 times more CD45(+) cells than the eGFP(-)CD45(-)CD31(+) indicating that the AWE vector was identifying a subpopulation inside the CD45(-)CD31(+) cells with higher hemogenic capacity. We also showed generation of CD45(+) cells from the eGFP(+)CD45(-)CD31(low/-)CD34(-) population but not from the eGFP(-)CD45(-)CD31(low/-)CD34(-) cells. This is, to our knowledge, the first report of a gene transfer vector which specifically labels hemogenic progenitors and hematopoietic cells emerging from hESCs. We propose the use of WAS-promoter driven LVs as a novel tool to studying human hematopoietic development.  相似文献   

13.
Interleukin-2 receptors (IL-2R) are expressed on minor populations of immature and mature human thymocytes. These studies were designed to determine if immature T cells could respond to the mitogen phytohemagglutinin (PHA-P) plus IL-2 in vitro by increasing the expression of IL-2R and by proliferation. Using monoclonal antibodies to CD5 and magnetic immunobeads we were able to remove all mature, "bright" CD5+ cells from nylon wool-purified thymocytes and to obtain less mature cells which consisted almost completely of cells with the CD4+CD8+ phenotype. These immature cells were mostly "dim" CD5+ and less than 5% CD5- and a small percentage expressed the IL-2R. After culture in serum-free medium with PHA-P, these cells showed only a slight increase in the percentage of IL-2R+ cells and the addition of IL-2 did not increase the percentage of IL-2R+ cells and no proliferation was observed. Unseparated, nylon wool-purified thymocytes contained 14% bright CD5+ cells. These bright CD5+ cells had a mature phenotype of CD4+CD8- (52%) and CD4-CD8+ (27%) cells. A small percentage of these cells were IL-2R+. These bright CD5+IL-2R+ cells were predominantly mature CD4+CD8- cells as measured by three-color flow cytometry. After culture with PHA-P and IL-2, the percentage of IL-2R+ cells increased and they were now found not only on CD4+CD8- but also on CD4-CD8+ and on CD4+CD8+ cells. IL-2 plus PHA-P increased proliferation of these cells as compared to those cultured in medium with PHA-P without IL-2. Thus, we show that human immature thymocytes in contrast to mature thymocytes are not responsive to IL-2 as measured by a lack of IL-2R expression and proliferation. These data indicate that mature thymocytes can express a functional high affinity receptor for IL-2 and suggest that immature thymocytes may not possess a (functional) p75 chain of the IL-2R.  相似文献   

14.
Murine embryonic stem (ES) cells are cell lines established from blastocyst which can contribute to all adult tissues, including the germ-cell lineage, after reincorporation into the normal embryo. ES cell pluripotentiality is preserved in culture in the presence of LIF. LIF withdrawal induces ES cell differentiation to nervous, myocardial, endothelial and hematopoietic tissues. The model of murine ES cell hematopoietic differentiation is of major interest because ES cells are non transformed cell lines and the consequences of genomic manipulations of these cells are directly measurable on a hierarchy of synchronized in vitro ES cell-derived hematopoietic cell populations. These include the putative hemangioblast (which represents the emergence of both hematopoietic and endothelial tissues during development), myeloid progenitors and mature stages of myeloid lineages. Human ES cell lines have been recently derived from human blastocyst in the USA. Their manipulation in vitro should be authorized in France in a near future with the possibility of developing a model of human hematopoietic differentiation. This allows to envisage in the future the use of ES cells as a source of human hematopoietic cells.  相似文献   

15.
Human embryonic stem (ES) cell lines are one of the possible sources of cardiac myocytes to be transplanted in patients with end-staged heart failure. However, prior to the application of human of ES cells for heart failure therapy, it is critical to validate their clinical use in large animals such as primates. Cynomolgus monkey ES cells have similar properties to human ES cells and can be used for primate studies. We demonstrate that 24-h stimulation by a histone deacetylase inhibitor, trichostatin A (TSA) facilitated myocardial differentiation of monkey ES cells with embryonic bodies that were seeded on gelatin-coated dishes. TSA-induced acetylating of histone-3/4 and expression of p300, one of the intrinsic histone acetyltransferases. Thus, such induction as well as inhibition of histone deacetylase may be involved in TSA-induced differentiation of cynomolgus monkey ES cells into cardiomyocytes.  相似文献   

16.
Current approaches to differentiate embryonic stem (ES) cells to hematopoietic precursors in vitro use either feeder cell, serum, conditioned culture medium or embryoid body, methods that cannot avoid undefined culture conditions, precluding analysis of the fate of individual cells. Here, we have developed a defined, serum-free and low cell-density differentiation program to generate endothelial and hematopoietic cells within 6 days from murine ES cells. Our novel approach identifies a set of factors that are necessary and sufficient to differentiate ES cells into definitive hematopoietic precursors, as documented by the time-lapse video microscopy of the stepwise differentiation processes from single progenitors. Moreover, this defined milieu revealed the essential role of bone morphogenetic protein 4 (BMP4) in determining the hematopoietic/endothelial fate and demonstrated that the hemogenic fate in mesoderm is determined as early as day 4 of our differentiation protocol. Our ability to directly convert ES cells to endothelial and hematopoietic precursors should have important utilities for studies of hematopoietic development and personalized medicine in the future.  相似文献   

17.
问充质干细胞体外调控骨髓造血前体细胞向单核系分化   总被引:2,自引:0,他引:2  
研究间充质干细胞(MSC)能否在体外调控造血.体外分离培养人骨髓来源的MSC,RT-PCR检测其造血生长因子的表达,并以其为饲养层细胞,接种骨髓单个核细胞(MNC),观察生长情况,并通过形态学观察和流式细胞术分析,鉴定细胞来源和分化方向.结果显示,MSC构成性表达SCF、Flt3L和M-CSF,不表达G-CSF和GM-CSF,在骨髓MNC和MSC共培养体系中,大约2周左右可以看到大量的圆形细胞粘附在梭型MSC上生长,细胞胞体为圆形,胞浆较丰富,胞核为圆形、半月型或肾型,部分细胞呈典型的单核细胞形态,流式细胞术分析该类细胞表达CD14,不表达CD15、CD41、glycophorin A、CD5和CD19.表明不需要添加外源性造血生长因子,间充质干细胞能在体外调控骨髓造血前体细胞向单核系分化,其定向分化可能与MSC分泌造血生长因子及MSC与造血细胞间相互作用有关.  相似文献   

18.
Clinical application of human embryonic stem (ES) cells will require the establishment of methods for their culture, either in the presence or absence of human-derived feeder cells. We have tested the ability of non-immortalized cultured cells derived from human umbilical cord (HUC cells) to support ES cell culture. A primate ES cell line that had been established and maintained with mouse embryonic fibroblasts was cultured on HUC cells for >3 months (HUC-maintained ES cells). These cells retained their expression of alkaline phosphatase, SSEA-4, Oct-3/4, and to a lesser extent Nanog, but did not express Rex-1. Nevertheless, HUC-maintained ES cells could produce ectoderm-, mesoderm- and endoderm-derived cells in teratomata that they formed in immunodeficient mice. We show that HUC-maintained ES cells could give rise to hematopoietic cells, although this ability of HUC cells varied among HUC cell populations derived from different neonates. HUC cells are promising as human material with which to maintain ES cells in a state that retains their ability to produce mature cells, including hematopoietic cells.  相似文献   

19.
Osteoclasts are hematopoietic cells essential for bone resorption. To understand the process of osteoclastogenesis, we have developed a culture system that employs a stromal cell line, in which differentiation of osteoclasts from single embryonic stem (ES) cells occurs. This culture, which did not require any cell passaging or other manipulations, enabled us to investigate the temporal and spatial localization of the osteoclast lineage in the colonies formed from ES cells. Cells expressing tartrate-resistant acid phosphatase, a specific marker of the osteoclast lineage, were first detected on day 8, and subsequently became localized at the periphery of colonies and matured into multinucleated cells to resorb bone. Addition of macrophage colony-stimulating factor and osteoprotegerin-ligand, which are produced by stromal cells, promoted osteoclastogenesis in whole colonies, indicating that the location and maintenance of mature osteoclasts as well as the growth and differentiation of osteoclast precursors are regulated by these two factors.  相似文献   

20.
We characterized the surface antigen and mRNA expression for the CD11c (alpha X, p150) subunit of the human leukocyte adherence receptor family during hematopoietic cell differentiation. The CD11c subunit antigen and mRNA are constitutively expressed in undifferentiated HL-60 promyelocytic leukemia cells, and levels increase markedly with differentiation along the monocyte/macrophage pathway using phorbol myristate acetate. Human monocyte-derived macrophages and human alveolar macrophages express elevated levels of the CD11c subunit antigen and mRNA, indicating that the changes observed in vitro are present in vivo. Dot blot analysis of immature and mature lymphoid and myeloid cells and cell lines demonstrate equivalent levels of CD11c mRNA expression. We conclude that CD11c gene expression is selectively increased during hematopoietic cell differentiation along the monocyte/macrophage pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号