首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-17A and IL-17F are related homodimeric proteins of the IL-17 family produced by Th17 cells. In this study, we show that mouse Th17 cells also produce an IL-17F/A heterodimeric protein. Whereas naive CD4(+) T cells differentiating toward the Th17 cell lineage expressed IL-17F/A in higher amounts than IL-17A/A homodimer and in lower amounts than IL-17F/F homodimer, differentiated Th17 cells expressed IL-17F/A in higher amounts than either homodimer. In vitro, IL-17F/A was more potent than IL-17F/F and less potent than IL-17A/A in regulating CXCL1 expression. Neutralization of IL-17F/A with an IL-17A-specific Ab, and not with an IL-17F-specific Ab, reduced the majority of IL-17F/A-induced CXCL1 expression. To study these cytokines in vivo, we established a Th17 cell adoptive transfer model characterized by increased neutrophilia in the airways. An IL-17A-specific Ab completely prevented Th17 cell-induced neutrophilia and CXCL5 expression, whereas Abs specific for IL-17F or IL-22, a cytokine also produced by Th17 cells, had no effects. Direct administration of mouse IL-17A/A or IL-17F/A, and not IL-17F/F or IL-22, into the airways significantly increased neutrophil and chemokine expression. Taken together, our data elucidate the regulation of IL-17F/A heterodimer expression by Th17 cells and demonstrate an in vivo function for this cytokine in airway neutrophilia.  相似文献   

2.
IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.  相似文献   

3.
IL-17A is a T cell-derived proinflammatory cytokine that contributes to the pathogenesis of rheumatoid arthritis. Recently, six related molecules have been identified to form the IL-17 family, as follows: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. Whereas IL-17A and IL-17F up-regulate IL-6 in synovial fibroblasts, IL-17B and IL-17C are reported to stimulate the release of TNF-alpha and IL-1beta from the monocytic cell line, THP-1 cell. However, their detailed function remains to be elucidated. We report in this study the effects of IL-17 family on the collagen-induced arthritis (CIA) progression by T cell gene transfer and bone marrow chimeric mice. The mRNA expressions of IL-17 family (IL-17A, IL-17B, IL-17C, and IL-17F) and their receptor (IL-17R and IL-17Rh1) genes in the arthritic paws of CIA mice were elevated compared with controls. Although IL-17A and IL-17F were expressed in CD4(+) T cells, IL-17B and IL-17C were expressed in the cartilage and in various cell populations in the CIA arthritic paws, respectively. In vitro, IL-17A, IL-17B, IL-17C, and IL-17F induced TNF-alpha production in mouse peritoneal exudate cells. In vivo, adoptive transfer of IL-17B- and IL-17C-transduced CD4(+) T cells evidently exacerbated arthritis. Bone marrow chimeric mice of IL-17B and IL-17C exhibited elevated serum TNF-alpha concentration and the high arthritis score upon CIA induction. Moreover, neutralization of IL-17B significantly suppressed the progression of arthritis and bone destruction in CIA mice. Therefore, not only IL-17A, but also IL-17B and IL-17C play an important role in the pathogenesis of inflammatory arthritis.  相似文献   

4.
17 alpha-Methyltestosterone and the reduced metabolites, 17 alpha-methyl-5 alpha-androstane-3 alpha, 17 beta-diol, 17 alpha-methyl-5 alpha-androstane-3 beta, 17 beta-diol and 17 alpha-methyl-5 beta-androstane-3 alpha, 17 beta-diol, together with three hydroxylated metabolites, 17 alpha-methyl-5 beta-androstane-3 alpha, 16 alpha, 17 beta-triol, 17 alpha-methyl-5 beta-androstane-3 alpha, 16 beta, 17 beta-triol and a new metabolite, 17 alpha-methyl-5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol, were isolated and identified in the urine of rabbits dosed with 17 alpha-methyltestosterone. No hydroxylated 5 alpha-metabolite of 17 alpha-methyltestosterone has been identified previously. No of 17 alpha-methyltestosterone has been identified previously. No evidence for epimerization at the C-17 position was observed.  相似文献   

5.
Evolution of the IL17 receptor family in chordates: a new subfamily IL17REL   总被引:1,自引:0,他引:1  
Wu B  Jin M  Zhang Y  Wei T  Bai Z 《Immunogenetics》2011,63(12):835-845
The human interleukin 17 receptor (IL17R) family plays a critical role in inflammatory responses and contributes to the pathology of many autoimmune diseases. So far, five members, IL17RA to IL17RE, have been identified. Recently, some IL17R genes have been identified in non-mammalian species, such as zebrafish IL17RD; however, there are no reports on the evolutionary history of this complex gene family through comparative phylogenetic approaches. Here, we concentrated on the IL17R evolution in chordates. There are two IL17Rs in the genome of the basal chordate amphioxus: IL17RA and IL17RD. After two rounds of whole genome duplications, these two IL17R genes expanded into five early vertebrate IL17R genes, IL17RA to IL17RE. IL17RA and IL17RD are found in most vertebrates, whereas the other three, IL17RB, ILR17RC, and IL17RE, underwent some loss in vertebrates during evolution. Our sequence and structure analyses reveal functional similarities and distinctions between the different IL17Rs. Based on similarity searches for IL17R-like proteins within chordate sequences, a group of IL17RE-like (IL17REL) proteins were identified from mammalians to lower vertebrates. In silico and expression analyses on the novel IL17RELs showed that this group of receptors is highly conserved across species, indicating that IL17REL may represent a unique subfamily of IL17Rs.  相似文献   

6.
The proinflammatory cytokines IL-17A and IL-17F have a high degree of sequence similarity and share many biological properties. Both have been implicated as factors contributing to the progression of inflammatory and autoimmune diseases. Moreover, reagents that neutralize IL-17A significantly ameliorate disease severity in several mouse models of human disease. IL-17A mediates its effects through interaction with its cognate receptor, the IL-17 receptor (IL-17RA). We report here that the IL-17RA-related molecule, IL-17RC is the receptor for IL-17F. Notably, both IL-17A and IL-17F bind to IL-17RC with high affinity, leading us to suggest that a soluble form of this molecule may serve as an effective therapeutic antagonist of IL-17A and IL-17F. We generated a soluble form of IL-17RC and demonstrate that it effectively blocks binding of both IL-17A and IL-17F, and that it inhibits signaling in response to these cytokines. Collectively, our work indicates that IL-17RC functions as a receptor for both IL-17A and IL-17F and that a soluble version of this protein should be an effective antagonist of IL-17A and IL-17F mediated inflammatory diseases.  相似文献   

7.
Rong Z  Cheng L  Ren Y  Li Z  Li Y  Li X  Li H  Fu XY  Chang Z 《Cellular signalling》2007,19(7):1514-1520
Interleukin-17F (IL-17F), together with interleukin-17A (IL-17 or IL-17A), is a marker of T(H)17 cells, a new lineage of effector CD4(+) T cells to contribute to pathogenesis of a growing list of autoimmune and inflammatory diseases, such as experimental autoimmune encephalitis (EAE) and collagen-induced arthritis (CIA). IL-17F, similar to IL-17A, was reported to employ interleukin-17 receptor (IL-17R or IL-17RA) for signaling but the downstream cascades remain largely elusive. Here we report that TRAF6 interacts with IL-17R and mediates ubiquitination of the receptor. We observed that IL-17F and IL-17A could induce IL-17R ubiquitination and DN-TRAF6, a dominant-negative mutant, could block IL-17F- but not IL-17A-triggered ubiquitination of IL-17R. Moreover, we showed that the ubiquitination of IL-17R was positively correlated with the downstream signaling, as evaluated by a luciferase reporter driven by a putative native promoter of 24p3, an IL-17 targeted gene. Our results indicate that ubiquitination of IL-17R mediated by TRAF6 plays a critical role in IL-17F signaling. This study, for the first time, reveals a possible molecular mechanism that the initiation of the IL-17F/IL-17R signaling pathway requires the receptor ubiquitination by TRAF6.  相似文献   

8.
Enterotoxigenic Escherichia coli strains express fimbriae which mediate binding to intestinal mucosal cells. The F17 fimbriae mediate binding to N-acetylglucosamine-containing receptors present on calf intestinal mucosal cells. These fimbriae consist of F17-A subunit peptides. Analysis of the F17 gene cluster indicated that at least the F17-A, F17-C, F17-D, and F17-G genes are indispensable to obtain adhesive F17 fimbriae (unpublished data). Genetic evidence is presented that the F17-G protein, a minor fimbrial component, is required for the binding of the F17 fimbriae to the intestinal villi. The F17-G gene was cloned and sequenced. An open reading frame of 1,032 bp encoding a polypeptide of 344 amino acids, starting with a signal sequence of 22 residues, was localized. The F17-G mutant strain produced F17 fimbriae which were morphologically identical to the fimbriae purified from strains which contained the intact F17 gene cluster. However, this F17-G mutant could no longer adhere to calf villi. The F17-G locus was shown to act in trans: transformation of the F17-G mutant strain, still expressing the genes F17-A, F17-C, and F17-D, with a vector expressing the F17-G gene restored the binding activity of this mutant strain.  相似文献   

9.
Pneumococcal capsular polysaccharide group 17 contains two distinct serotypes, 17F and 17A. Pneumococcal group 17 is present in the licensed 23 valent polysaccharide vaccines. One such vaccine contains type 17A, while the other vaccine contains type 17F. The purpose of these studies was to determine the extent of cross-protection that could be expected, as both type 17F and 17A cause disease. The antibody responses of one group of adults to a vaccine containing type 17F was compared to that of another group that received a type 17A containing vaccine. By ELISA the 17A vaccine induced more cross-reactive antibodies. Opsonophagocytic antibodies are a good predictor of protection and both vaccines induced antibodies opsonic for both 17F and 17A. We conclude that either 17F or 17A will provide similar protection against group 17 disease.  相似文献   

10.
IL-17RA is a shared receptor subunit for several cytokines of the IL-17 family, including IL-17A, IL-17C, IL-17E (also called IL-25) and IL-17F. It has been shown that mice deficient in IL-17RA are more susceptible to sepsis than wild-type mice, suggesting that IL-17RA is important for host defense against sepsis. However, it is unclear which ligands for IL-17RA, such as IL-17A, IL-17C, IL-17E/IL-25 and/or IL-17F, are involved in the pathogenesis of sepsis. Therefore, we examined IL-17A, IL-17E/IL-25 and IL-17F for possible involvement in LPS-induced endotoxin shock. IL-17A-deficient mice, but not IL-25- or IL-17F-deficient mice, were resistant to LPS-induced endotoxin shock, as compared with wild-type mice. Nevertheless, studies using IL-6-deficient, IL-21Rα-deficient and Rag-2-deficient mice, revealed that neither IL-6 and IL-21, both of which are important for Th17 cell differentiation, nor Th17 cells were essential for the development of LPS-induced endotoxin shock, suggesting that IL-17A-producing cells other than Th17 cells were important in the setting. In this connection, IL-17A was produced by macrophages, DCs and eosinophils after LPS injection. Taken together, these findings indicate that IL-17A, but not IL-17F or IL-25, is crucial for LPS-induced endotoxin shock. In addition, macrophages, DCs and eosinophils, but not Th17 cells or γδ T cells, may be sources of IL-17A during LPS-induced endotoxin shock.  相似文献   

11.
W Sch?nzer  G Opfermann  M Donike 《Steroids》1992,57(11):537-550
The 17-epimers of the anabolic steroids bolasterone (I), 4-chlorodehydromethyltestosterone (II), fluoxymesterone (III), furazabol (IV), metandienone (V), mestanolone (VI), methyltestosterone (VII), methandriol (VIII), oxandrolone (IX), oxymesterone (X), oxymetholone (XI), stanozolol (XII), and the human metabolites 7 alpha,17 alpha-dimethyl-5 beta-androstane-3 alpha,17 beta-diol (XIII) (metabolite of I), 6 beta-hydroxymetandienone (XIV) (metabolite of V), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (XV) (metabolite of V), 3'-hydroxystanozolol (XVI) (metabolite of XII), as well as the reference substances 17 beta-hydroxy-17 alpha-methyl-5 beta-androstan-3-one (XVII), 17 beta-hydroxy-17 alpha-methyl-5 beta-androst-1-en-3-one (XVIII) (also a metabolite of V), the four isomers 17 alpha-methyl-5 alpha-androstane-3 alpha,17 beta-diol (XIX) (also a metabolite of VI, VII, and XI), 17 alpha-methyl-5 alpha-androstane-3 beta,17 beta-diol (XX), 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (XXI) (also a metabolite of V, VII, and VIII), 17 alpha-methyl-5 beta-androstane-3 beta,17 beta-diol (XXII), and 17 beta-hydroxy-7 alpha,17 alpha-dimethyl-5 beta-androstan-3-one (XXIII) were synthesized via a 17 beta-sulfate that spontaneously hydrolyzed in water to several dehydration products, and to the 17 alpha-hydroxy-17 beta-methyl epimer. The 17 beta-sulfate was prepared by reaction of the 17 beta-hydroxy-17 alpha-methyl steroid with sulfur trioxide pyridine complex. The 17 beta-methyl epimers are eluted in gas chromatography as trimethylsilyl derivatives from a capillary SE-54 or OV-1 column 70-170 methylen units before the corresponding 17 alpha-methyl epimer. The electron impact mass spectra of the underivatized and trimethylsilylated epimers are in most cases identical and only for I, II, and V was a differentiation between the 17-epimers possible. 1H nuclear magnetic resonance (NMR) spectra show for the 17 beta-methyl epimer a chemical shift for the C-18 protons (singlet) of about 0.175 ppm (in deuterochloroform) to a lower field. 13C NMR spectra display differences for the 17-epimeric steroids in shielding effects for carbons 12-18 and 20. Excretion studies with I-XII with identification and quantification of 17-epimeric metabolites indicate that the extent of 17-epimerization depends on the A-ring structure and shows a great variation for the different 17 alpha-methyl anabolic steroids.  相似文献   

12.
Interleukin‐17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL‐17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL‐17A‐producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non‐T non‐B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL‐17 family cytokines other than IL‐17A are also expressed by CD4+ T cells: IL‐17E by Th2 cells and IL‐17F by Th17 cells. IL‐17A and IL‐17F induce expression of pro‐inflammatory cytokines to induce inflammation and anti‐microbial peptides to kill pathogens, whereas IL‐17E induces allergic inflammation. However, the functions of other IL‐17 family cytokines have been unclear. Recent studies have shown that IL‐17B and IL‐17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL‐17E and IL‐17F by epithelial cells has also been reported and epithelial cell‐derived IL‐17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell‐derived IL‐17A and non‐hematopoietic cell‐derived IL‐17B, IL‐17C, IL‐17D, IL‐17E and IL‐17F in infections and propose functional differences between these two categories of IL‐17 family cytokines.  相似文献   

13.
Genomics of fish IL-17 ligand and receptors: a review   总被引:2,自引:0,他引:2  
Interleukin-17 (IL-17) is a cytokine family composed of six ligands (A–F). Especially, the IL-17A and IL-17F are best characterized cytokines of IL-17 family cytokine. These are produced by Th17 cells and induce the expression of many mediators of inflammation properties. In addition, the five member of IL-17 receptor family (RA-RE) have been identified in mammals. Although the research on fish IL-17 is a little to date, this review discusses some of the recent advances in research on IL-17 ligand and receptor genes in fish. IL-17 family member was chosen from the fish genome database, and its structure and phylogeny is analyzed in detail. Moreover, invertebrate IL-17 genes are also discussed, and the isolation and current status of fish IL-17 receptor genes are summarized. Comparative genomic analysis of the IL-17 family among mammals, teleost and invertebrates provided new insights. Novel IL-17 ligand (IL-17N) was identified from teleost, moreover it was suggested that IL-17N may be a teleost specific ligand by synteny and phylogenetic analysis. On the other hand, IL-17 receptors are well conserved between mammal and teleost, the five member of IL-17 receptor family: IL-17RA-RE were found on the teleost genome. In addition, the IL-17RA gene was duplicated in tandem on the stickleback and medaka genome. Knowledge about the IL-17 ligand/receptor in fish is very limited. Therefore this review will hopefully encourage future studies of IL-17 in fish.  相似文献   

14.
IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins, as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells, by enzyme-linked immunosorbent assay, immunoprecipitation followed by Western blotting, and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system, and that all forms of the recombinant proteins have in vitro functional activity. Furthermore, we find that in addition to the homodimers of IL-17F and IL-17A, activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.  相似文献   

15.
IL-23 and IL-17A regulate granulopoiesis through G-CSF, the main granulopoietic cytokine. IL-23 is secreted by activated macrophages and dendritic cells and promotes the expansion of three subsets of IL-17A-expressing neutrophil-regulatory T (Tn) cells; CD4(-)CD8(-)alphabeta(low), CD4(+)CD8(-)alphabeta(+) (Th17), and gammadelta(+) T cells. In this study, we investigate the effects of IL-17A on circulating neutrophil levels using IL-17R-deficient (Il17ra(-/-)) mice and Il17ra(-/-)Itgb2(-/-) mice that lack both IL-17R and all four beta(2) integrins. IL-17R deficiency conferred a reduction in neutrophil numbers and G-CSF levels, as did Ab blockade against IL-17A in wild-type mice. Bone marrow transplantation revealed that IL-17R expression on nonhemopoietic cells had the greatest effects on regulating blood neutrophil counts. Although circulating neutrophil numbers were reduced, IL-17A expression, secretion, and the number of IL-17A-producing Tn cells were elevated in Il17ra(-/-) and Il17ra(-/-)Itgb2(-/-) mice, suggesting a negative feedback effect through IL-17R. The negative regulation of IL-17A-producing T cells and IL-17A and IL-17F gene expression through the interactions of IL-17A or IL-17F with IL-17R was confirmed in splenocyte cultures in vitro. We conclude that IL-17A regulates blood neutrophil counts by inducing G-CSF production mainly in nonhemopoietic cells. IL-17A controls the expansion of IL-17A-producing Tn cell populations through IL-17R.  相似文献   

16.
New combined radioimmunoassay for determination of 17-hydroxypregnenolone sulfate (17-PregS) involving the hydrolysis of analyte by methanolysis was developed. 17-PregS, in addition to being secreted by the adrenals, is also formed by peripheral sulfoconjugation of 17-hydroxypregnenolone (17-Preg) or directly by hydroxylation of pregnenolone sulfate with 17alpha-hydroxylase/C17-20lyase. The measurement of 17-PregS can be used as a tool for detection of enzymatic deficiency particularly in pregnancy and for detection of congenital adrenal hyperplasia or gonadal dysfunction. The serum levels of 17-PregS, 17-Preg, dehydroepiandrosterone, dehydroepiandrosterone sulfate, pregnenolone and pregnenolone sulfate were measured in different age groups of human and in pregnant women respecting the age of gestation. The levels of 17-PregS are approximately three times higher than the levels of free 17-Preg in all subject groups. The levels of 17-PregS during pregnancy reached the local minimum in the 3rd month of gestation. The ratio of 17-PregS to free 17-Preg showed increasing profile during pregnancy with a maximum in the 8th month of gestation. These findings indicate that, the conversion of pregnenolone sulfate to 17-PregS is the major metabolic pathway for biosynthesis of 17-PregS.  相似文献   

17.
By stereospecific microbial reduction with Rhodosporidium rubrum or Rhodotorula glutinis, 17 alpha-cyano-methyl-4-estren-17 beta-ol-3-one was metabolized to 17 alpha-cyanomethyl-5 alpha-estrane-3 beta,17 beta-diol (50%) and 17 alpha-cyanomethyl-5 alpha-estrane-3 alpha,17 beta-diol (30%). By Clostridium paraputrificum the same substrate was reduced stereospecifically to 17 alpha-cyanomethyl-5 beta-estrane-3 alpha, 17 beta-diol (70%). When the corresponding 9-dehydrogenated compound 17 alpha-cyanomethyl-4,9-estradien-17 beta-ol-3-one (STS 557, a new progestagen) was fermented, yeasts failed in 5 alpha-reducing the 4-double bond. Still Clostridium paraputrificum formed the expected 5 beta-reduced metabolite 17 alpha-cyanomethyl-5 beta-estr-9-ene-3 alpha,17 beta-diol (60%). Structures were elucidated by n.m.r. and mass spectra and partly by circular dichroism. By oxidation of the metabolites, the corresponding 3-oxo compounds 17 alpha-cyanomethyl-5 alpha-estran-17 beta-ol-3-one, 17 alpha-cyanomethyl-5 beta-estran-17 beta-ol-3-one and 17 alpha-cyanomethyl-5 beta-estr-9-en-17 beta-ol-3-one were prepared. The evident influence of the 9-double bond on reduction of the 4-en-3-oxo compound STS 557 preventing 5 alpha-reduction but permitting 5 beta-reduction is discussed in view of the distinctly diminished metabolism of this progestagen in mammals.  相似文献   

18.
Interleukin-17 family and IL-17 receptors   总被引:26,自引:0,他引:26  
Interleukin-17 (IL-17) is a pro-inflammatory cytokine secreted by activated T-cells. Recently discovered related molecules are forming a family of cytokines, the IL-17 family. The prototype member of the family has been designated IL-17A. Due to recent advances in the human genome sequencing and proteomics five additional members have been identified and cloned: IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. The cognate receptors for the IL-17 family identified thus far are: IL-17R, IL-17RH1, IL-17RL (receptor like), IL-17RD and IL-17RE. However, the ligand specificities of many of these receptors have not been established. The IL-17 signaling system is operative in disparate tissues such as articular cartilage, bone, meniscus, brain, hematopoietic tissue, kidney, lung, skin and intestine. Thus, the evolving IL-17 family of ligands and receptors may play an important role in the homeostasis of tissues in health and disease beyond the immune system. This survey reviews the biological actions of IL-17 signaling in cancers, musculoskeletal tissues, the immune system and other tissues.  相似文献   

19.
Microbial transformation of the new progestagen STS 557 (17α-cyanomethyl-17-hydroxy-4,9-estradien-3-one) by Mycobacterium smegmatis yielded predominantly ring A-aromatized compounds: 17α-cyanomethyl-1,3,5(10),9(11)-estratetraene-3, 17-diol, 17α-cyanomethyl-1,3,5(10)-estratriene-3, 17-diol and the corresponding 3-methyl ethers. The analogous compound without the 9(10) double bond, 17α-cyanomethyl-19-nortestosterone, was transformed mainly to 5α-hydrogenated metabolites: 17α-cyanomethyl-17-hydroxy-5α-estran-3-one, 17α-cyanomethyl-17-hydroxy-5α-1-estren-3-one, 17α-cyanomethyl-5α-estrane-3α, 17-diol, and 17α-cyanomethyl-5α-estrane-3β, 17-diol. From these results, it is concluded that 4,9-dien-3-oxo compounds are not substrates for enzymatic 5α-hydrogenation.  相似文献   

20.
Interleukin-17 (IL-17) is a pro-inflammatory cytokine produced primarily by a subset of CD4+ T cells, called Th17 cells, that is involved in host defense, inflammation and autoimmune disorders. The two most structurally related IL-17 family members, IL-17A and IL-17F, form homodimeric (IL-17A/A, IL-17F/F) and heterodimeric (IL-17A/F) complexes. Although the biological significance of IL-17A and IL-17F have been investigated using respective antibodies or gene knockout mice, the functional study of IL-17A/F heterodimeric form has been hampered by the lack of an inhibitory tool specific to IL-17A/F. In this study, we aimed to develop an RNA aptamer that specifically inhibits IL-17A/F. Aptamers are short single-stranded nucleic acid sequences that are selected in vitro based on their high affinity to a target molecule. One selected aptamer against human IL-17A/F, AptAF42, was isolated by repeated cycles of selection and counterselection against heterodimeric and homodimeric complexes, respectively. Thus, AptAF42 bound IL-17A/F but not IL-17A/A or IL-17F/F. The optimized derivative, AptAF42dope1, blocked the binding of IL-17A/F, but not of IL-17A/A or IL-17F/F, to the IL-17 receptor in the surface plasmon resonance assay in vitro. Consistently, AptAF42dope1 blocked cytokine GRO-α production induced by IL-17A/F, but not by IL-17A/A or IL-17F/F, in human cells. An RNA footprinting assay using ribonucleases against AptAF42dope1 in the presence or absence of IL-17A/F revealed that part of the predicted secondary structure fluctuates between alternate forms and that AptAF42dope1 is globally protected from ribonuclease cleavage by IL-17A/F. These results suggest that the selected aptamer recognizes a global conformation specified by the heterodimeric surface of IL-17A/F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号