首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages play a key role in the pathogenesis of atherosclerosis, in part by destabilizing plaques. We and others have shown that low concentrations of oxidized LDL (oxLDL) inhibit macrophage apoptosis. As oxLDL is present in lesions, this may be a mechanism by which macrophage populations in the intima are expanded. We have previously shown that oxLDL activates prosurvival signalling pathways such as the phosphoinositide 3-kinase (PI3K) pathway in bone marrow derived macrophages (BMDMs). However, little is known about more upstream signalling events especially at the receptor level. The endocytic pattern recognition receptors (PRRs), scavenger receptor A (SR-A) and CD36, are the main receptors on macrophages for uptake of oxLDL and are therefore important in foam cell formation. The signalling PRRs such as toll-like receptor (TLR) 2 and 4 also bind some types of oxLDL. This study was done to determine if any of the known PRRs are required for the anti-apoptotic effects of oxLDL in BMDMs. To do this, we tested the effect of oxLDL on viability of BMDMs lacking both SR-A and CD36 or lacking TLR2, TLR4, CD14, FcγRIIb, or RAGE. Our results indicate that none of these receptors are essential for activating the oxLDL prosurvival pathway. Furthermore, we show that the anti-apoptotic effect is not dependent on the uptake of oxLDL.  相似文献   

2.
Class A scavenger receptors (SR-A) participate in multiple macrophage functions including macrophage adhesion to modified proteins. SR-A-mediated adhesion may therefore contribute to chronic inflammation by promoting macrophage accumulation at sites of protein modification. The mechanisms that couple SR-A binding to modified proteins with increased cell adhesion have not been defined. In this study, SR-A expressing HEK cells and SR-A+/+ or SR-A–/– macrophages were used to delineate the signaling pathways required for SR-A-mediated adhesion to modified protein. Inhibiting Gi/o activation, which decreases initial SR-A-mediated cell attachment, did not prevent the subsequent spreading of attached cells. In contrast, inhibition of Src kinases or PI3-kinase abolished SR-A-dependent cell spreading without affecting SR-A-mediated cell attachment. Consistent with these results, the Src kinase Lyn and PI3-kinase were sequentially activated during SR-A-mediated cell spreading. Furthermore, activation of both Lyn and PI3-kinase was required for enhancing paxillin phosphorylation. Activation of a Src kinase-PI3-kinase-Akt pathway was also observed in cells expressing a truncated SR-A protein that does not internalize indicating that SR-A-mediated activation of intracellular signaling cascades following adhesion to MDA-BSA is independent of receptor internalization. Thus SR-A binding to modified protein activates signaling cascades that have distinct roles in regulating initial cell attachment and subsequent cell spreading. macrophage; inflammation; intracellular signaling  相似文献   

3.
The macrophage scavenger receptor macrophage receptor with a collagenous structure (MARCO) is expressed in mice by the marginal zone macrophages of the spleen and by macrophages of the medullary cords of lymph nodes, as well as the peritoneal macrophages. MARCO is a relative of scavenger receptor A (SR-A), the more widely expressed prototypic member of the scavenger receptor family. In the present study, we found that genetic ablation of MARCO leads to changes in the organization of the splenic marginal zone, and causes a significant reduction in the size of the resident peritoneal macrophage population, possibly due to changes in adhesion and migration capacity. In mice lacking both MARCO and SR-A these effects are even more apparent. During ontogeny, the appearance and organization of the MARCO-expressing cells in the spleen precedes the appearance of other receptors on macrophages in the marginal zone, such as SIGNR1 and Siglec-1. In the absence of MARCO, a clear delay in the organization of the marginal zone was observed. Similar findings were seen when the reappearance of the various subsets from precursors was studied after depleting macrophages from the adult spleen by a liposome treatment. When challenged with a pneumococcal polysaccharide vaccine, a T-independent type 2 Ag for which an intact marginal zone is crucial, the knockout mice exhibited a clearly impaired response. These findings suggest that both MARCO and SR-A, in addition to being important scavenger receptors, could be involved in the positioning and differentiation of macrophages, possibly through interaction with endogenous ligands.  相似文献   

4.
Recent evidence suggests that the macrophage scavenger receptor class A (SR-A, aka, CD204) plays a role in the induction of innate immune and inflammatory responses. We investigated whether SR-A will cooperate with Toll-like receptors (TLRs) in response to TLR ligand stimulation. Macrophages (J774/a) were treated with Pam2CSK4, (TLR2 ligand), Polyinosinic:polycytidylic acid (Poly I:C) (TLR3 ligand), and Lipopolysaccharides (LPS) (TLR4 ligand) for 15 min in the presence or absence of fucoidan (the SR-A ligand). The levels of phosphorylated IκBα (p-IκBα) were examined by Western blot. We observed that Poly I:C and LPS alone, but not Pam2CSK4 or fucoidan increased the levels of p-IκBα. However, LPS-induced increases in p-IκBα levels were further enhanced when presence of the fucoidan. Immunoprecipitation and double fluorescent staining showed that LPS stimulation promotes SR-A association with TLR4 in the presence of fucoidan. To further confirm our observation, we isolated peritoneal macrophages from SR-A deficient (SR-A(-/-)), TLR4(-/-) and wild type (WT) mice, respectively. The peritoneal macrophages were treated with LPS for 15min in the presence and absence of fucoidan. We observed that LPS-stimulated TNFα and IL-1β production was further enhanced in the WT macrophages, but did not in either TLR4(-/-) or SR-A(-/-) macrophages, when fucoidan was present. Similarly, in the presence of fucoidan, LPS-induced IκBα phosphorylation, NF-κB binding activity, and association between TLR4 and SR-A were significantly enhanced in WT macrophages compared with LPS stimulation alone. The data suggests that SR-A is needed for LPS-induced inflammatory responses in macrophages.  相似文献   

5.
Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetes-related deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db) mice are given cholesteryl ester intraperitoneally (IP), peritoneal macrophages (PerMPhis) recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMPhis from heterozygote control (db/+) mice. Notably, PerMPhi fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMPhi. Finally, in order to determine if these scavenger receptors (SRs) were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMPhis showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression.  相似文献   

6.
Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.  相似文献   

7.
The macrophage scavenger receptor class A (SR-A) participates in the innate immune and inflammatory responses. This study examined the role of macrophage SR-A in myocardial ischemia/reperfusion (I/R) injury and hypoxia/reoxygenation (H/R)-induced cell damage. SR-A?/? and WT mice were subjected to ischemia (45 min) followed by reperfusion for up to 7 days. SR-A?/? mice showed smaller myocardial infarct size and better cardiac function than did WT I/R mice. SR-A deficiency attenuated I/R-induced myocardial apoptosis by preventing p53-mediated Bak-1 apoptotic signaling. The levels of microRNA-125b in SR-A?/? heart were significantly greater than in WT myocardium. SR-A is predominantly expressed on macrophages. To investigate the role of SR-A macrophages in H/R-induced injury, we isolated peritoneal macrophages from SR-A deficient (SR-A?/?) and wild type (WT) mice. Macrophages were subjected to hypoxia followed by reoxygenation. H/R markedly increased NF-κB binding activity as well as KC and MCP-1 production in WT macrophages but not in SR-A?/? macrophages. H/R induced caspase-3/7 and -8 activities and cell death in WT macrophages, but not in SR-A?/? macrophages. The levels of miR-125b in SR-A?/? macrophages were significantly higher than in WT macrophages. Transfection of WT macrophages with miR-125b mimics attenuated H/R-induced caspase-3/7 and -8 activities and H/R-decreased viability, and prevented H/R-increased p-53, Bak-1 and Bax expression. The data suggest that SR-A deficiency attenuates myocardial I/R injury by targeting p53-mediated apoptotic signaling. SR-A?/? macrophages contain high levels of miR-125b which may play a role in the protective effect of SR-A deficiency on myocardial I/R injury and H/R-induced cell damage.  相似文献   

8.
Modification of low density lipoprotein (LDL) can result in the avid uptake of these lipoproteins via a family of macrophage transmembrane proteins referred to as scavenger receptors (SRs). The genetic inactivation of either of two SR family members, SR-A or CD36, has been shown previously to reduce oxidized LDL uptake in vitro and atherosclerotic lesions in mice. Several other SRs are reported to bind modified LDL, but their contribution to macrophage lipid accumulation is uncertain. We generated mice lacking both SR-A and CD36 to determine their combined impact on macrophage lipid uptake and to assess the contribution of other SRs to this process. We show that SR-A and CD36 account for 75-90% of degradation of LDL modified by acetylation or oxidation. Cholesteryl ester derived from modified lipoproteins fails to accumulate in macrophages taken from the double null mice, as assessed by histochemistry and gas chromatography-mass spectrometry. These results demonstrate that SR-A and CD36 are responsible for the preponderance of modified LDL uptake in macrophages and that other scavenger receptors do not compensate for their absence.  相似文献   

9.
The early signaling events in T cell activation through CD3 receptor include a rapid change in intra cellular free calcium concentration and reorganization of actin cytoskeleton. Phosphatidylinositol 4-kinases (PtdIns 4-kinases) are implicated as key components in these early signaling events. The role of type II PtdIns 4-kinase β in CD3 receptor signaling was investigated with the help of short hairpin RNA sequences. Cross-linking of CD3 receptors on Jurkat T Cells with monoclonal antibodies showed an early increase in type II PtdIns 4-kinase activity and co-localization of type II PtdIns 4-kinase β with CD3 ζ. Transfection of Jurkat T Cells with shRNAs inhibited CD3 receptor mediated type II PtdIns 4-kinase activation with a concomitant reduction in intra cellular calcium release, suggesting a role for type II PtdIns 4-kinase β in CD3 receptor signal transduction. Knock-down of type II PtdIns 4-kinase β with shRNAs also correlated with a decrease in PtdIns 4-kinase activity in cytoskeleton fractions and reduced adhesion to matrigel surfaces. These results indicate that type II PtdIns 4-kinase β is a key component in early T cell activation signaling cascades.  相似文献   

10.
Staphylococcus aureus is a major human opportunistic pathogen responsible for a broad spectrum of infections ranging from benign skin infection to more severe life threatening disorders (e.g. pneumonia, sepsis), particularly in intensive care patients. Scavenger receptors (SR-A and CD36) are known to be involved in S. aureus recognition by immune cells in addition to MARCO, TLR2, NOD2 and α5β1 integrin. In the present study, we further deciphered the contribution of SR-A and CD36 scavenger receptors in the control of infection of mice by S. aureus. Using double SR-A/CD36 knockout mice (S/C-KO) and S. aureus strain HG001, a clinically relevant non-mutagenized strain, we showed that the absence of these two scavenger receptors was protective in peritoneal infection. In contrast, the deletion of these two receptors was detrimental in pulmonary infection following intranasal instillation. For pulmonary infection, susceptible mice (S/C-KO) had more colony-forming units (CFU) in their broncho-alveolar lavages fluids, associated with increased recruitment of macrophages and neutrophils. For peritoneal infection, susceptible mice (wild-type) had more CFU in their blood, but recruited less macrophages and neutrophils in the peritoneal cavity than resistant mice. Exacerbated cytokine levels were often observed in the susceptible mice in the infected compartment as well as in the plasma. The exception was the enhanced compartmentalized expression of IL-1β for the resistant mice (S/C-KO) after peritoneal infection. A similar mirrored susceptibility to S. aureus infection was also observed for MARCO and TLR2. Marco and tlr2 -/- mice were more resistant to peritoneal infection but more susceptible to pulmonary infection than wild type mice. In conclusion, our results show that innate immune receptors can play distinct and opposite roles depending on the site of infection. Their presence is protective for local pulmonary infection, whereas it becomes detrimental in the peritoneal infection.  相似文献   

11.
It has been reported that ligands of the macrophage scavenger receptor (MSR) induce a range of cellular responses including urokinase-type plasminogen activator and the production of inflammatory cytokines. Although nitric oxide (NO) is an important regulatory molecule in physiological functions such as vascular homeostasis, neurotransmission, and host defense, the effect of MSR ligands on NO production from macrophages was unknown. Here, we demonstrate that the MSR ligand, fucoidan, but neither oxidized low-density lipoprotein, acetylated LDL, maleylated bovine serum albumin nor dextran sulfate induces activation of inducible nitric oxide synthase (iNOS) promoter or NO production in RAW264.7 cells. Furthermore, we investigated the molecular mechanism by which fucoidan induces iNOS promoter activation. Using different inhibitors, we showed that the stimulation of fucoidan was mediated by both the p38 mitogen-activated protein kinase and the NF-kappaB-dependent pathways. Although these two pathways were independent, heat shock protein 90 (HSP90) played a significant role in both pathways. Our previous study showed that HSP90 directly interacts with the cytoplasmic domain of MSR. These results provide the evidence that HSP90 bound to the cytoplasmic domain of MSR is implicated in MSR-mediated signal transduction. Moreover, fucoidan-induced NO production by peritoneal macrophages from MSR-knockout (MSR-/-) mice significantly decreases compared with those from wild-type mice. This is the first indication that MSR transduces the signal of fucoidan to iNOS gene expression.  相似文献   

12.
13.
14.
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.  相似文献   

15.
Atherosclerosis is considered a disease of chronic inflammation largely initiated and perpetuated by macrophage-dependent synthesis and release of pro-inflammatory mediators. Class A scavenger receptor (SR-A) expressed on macrophages plays a key role in this process. However, how SR-A-mediated pro-inflammatory response is modulated in macrophages remains ill defined. Here through immunoprecipitation coupled with mass spectrometry, we reported major vault protein (MVP) as a novel binding partner for SR-A. The interaction between SR-A and MVP was confirmed by immunofluorescence staining and chemical cross-linking assay. Treatment of macrophages with fucoidan, a SR-A ligand, led to a marked increase in TNF-α production, which was attenuated by MVP depletion. Further analysis revealed that SR-A stimulated TNF-α synthesis in macrophages via the caveolin- instead of clathrin-mediated endocytic pathway linked to p38 and JNK, but not ERK, signaling pathways. Importantly, fucoidan invoked an enrichment of MVP in lipid raft, a caveolin-reliant membrane structure, and enhanced the interaction among SR-A, caveolin, and MVP. Finally, we demonstrated that MVP elimination ameliorated SR-A-mediated apoptosis in macrophages. As such, MVP may fine-tune SR-A activity in macrophages which contributes to the development of atherosclerosis.  相似文献   

16.
Endothelin-1 (ET-1), a potent proatherogenic vasoconstrictive peptide, is known to promote macrophage foam cell formation via mechanisms that are not fully understood. Excessive lipid accumulation in macrophages is a major hallmark during the early stages of atherosclerotic lesions. Cholesterol homeostasis is tightly regulated by scavenger receptors (SRs) and ATP-binding cassette (ABC) transporters during the transformation of macrophage foam cells. The aim of this study was to investigate the possible mechanisms by which ET-1 affects lipid accumulation in macrophages. Our results demonstrate that oxidized low-density lipoprotein (oxLDL) treatment increases lipid accumulation in rat bone marrow-derived macrophages. Combined treatment with ET-1 and oxLDL significantly exacerbated lipid accumulation in macrophages as compared to treatment with oxLDL alone. The results of Western blotting show that ET-1 markedly decreased the ABCG1 levels via ET type A and B receptors and activation of the phosphatidylinositol 3-kinase pathway; however, ET-1 had no effect on the protein expression of CD36, SR-BI, SR-A, or ABCA1. In addition, real-time PCR analysis showed that ET-1 treatment did not affect ABCG1 mRNA expression. We also found that ET-1 decreases ABCG1 possibly due to the enhancement of the proteosome/calpain pathway-dependent degradation of ABCG1. Moreover, ET-1 significantly reduced the efficiency of the cholesterol efflux in macrophages. Taken together, these findings suggest that ET-1 may impair cholesterol efflux and further exacerbate lipid accumulation during the transformation of macrophage foam cells.  相似文献   

17.
SR-A (class A macrophage scavenger receptor) is a transmembrane receptor that can bind many different ligands, including modified lipoproteins that are relevant to the development of vascular diseases. However, the precise endocytic pathways of SR-A/mediated ligands internalization are not fully characterized. In this study, we show that the SR-A/ligand complex can be endocytosed by both clathrin- and caveolae-dependent pathways. Internalizations of SR-A-lipoprotein (such as acLDL) complexes primarily go through clathrin-dependent endocytosis. In contrast, macrophage apoptosis triggered by SR-A-fucoidan internalization requires caveolae-dependent endocytosis. The caveolae-dependent process activates p38 kinase and JNK signaling, whereas the clathrin-mediated endocytosis elicits ERK signaling. Our results suggest that different SR-A endocytic pathways have distinct functional consequences due to the activation of different signaling cascades in macrophages.  相似文献   

18.
T-cell activation involves two distinct signal transduction pathways. Antigen-specific signaling events are initiated by T-cell receptor recognition of cognate peptide presented by major histocompatibility complex molecules. Costimulatory signals, which are required for optimal T-cell activation and for overcoming the induction of anergy, can be provided by the homodimeric T-cell glycoprotein CD28 through its interaction with the counterreceptors B7-1 and B7-2 on antigen-presenting cells. Ligation of CD28 results in its phosphorylation on tyrosines and the subsequent recruitment and activation of phosphatidylinositol 3-kinase (PI 3-kinase). It has been suggested that the induced association of CD28 and PI 3-kinase is required for costimulation. We report here that ligation of CD19, a heterologous B-cell receptor that also associates with and activates PI 3-kinase upon ligation, failed to costimulate interleukin-2 production. Moreover, pharmacological inhibition of PI 3-kinase activity failed to block costimulation mediated by CD28. By mutational analysis, we demonstrate that disruption of PI 3-kinase association with CD28 also did not abrogate costimulation. These results argue that PI 3-kinase association with CD28 is neither necessary nor sufficient for costimulation of interleukin-2 production. Finally, we identify specific amino acid residues required for CD28-mediated costimulatory activity.  相似文献   

19.
The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A−/−) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and interferon (IFN)-β were significantly increased in SR-A−/− mice compared to wild-type mice, and elevated nuclear factor kappa B (NFκB) activation was detected in SR-A−/− macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NFκB in vitro. SR-A deletion also promoted the nuclear translocation of NFκB and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A−/− macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号