首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4 degrees C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

2.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520–2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4°C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

3.
An enzymatic route for the depolymerization of a heteropolysaccharide (xanthan) in Bacillus sp. strain GL1, which was closely related to Brevibacillus thermoruber, was determined by analyzing the structures of xanthan depolymerization products. The bacterium produces extracellular xanthan lyase catalyzing the cleavage of the glycosidic bond between pyruvylated mannosyl and glucuronyl residues in xanthan side chains (W. Hashimoto et al., Appl. Environ. Microbiol. 64:3765-3768, 1998). The modified xanthan after the lyase reaction was then depolymerized by extracellular beta-D-glucanase to a tetrasaccharide, without the terminal mannosyl residue of the side chain in a pentasaccharide, a repeating unit of xanthan. The tetrasaccharide was taken into cells and converted to a trisaccharide (unsaturated glucuronyl-acetylated mannosyl-glucose) by beta-D-glucosidase. The trisaccharide was then converted to the unsaturated glucuronic acid and a disaccharide (mannosyl-glucose) by unsaturated glucuronyl hydrolase. Finally, the disaccharide was hydrolyzed to mannose and glucose by alpha-D-mannosidase. This is the first complete report on xanthan depolymerization by bacteria. Novel beta-D-glucanase, one of the five enzymes involved in the depolymerization route, was purified from the culture fluid. This enzyme was a homodimer with a subunit molecular mass of 173 kDa and was most active at pH 6.0 and 45 degrees C. The enzyme specifically acted on xanthan after treatment with xanthan lyase and released the tetrasaccharide.  相似文献   

4.
The bacterium Bacillus sp. GL1 assimilates two kinds of heteropolysaccharides, gellan and xanthan, by using extracellular gellan and xanthan lyases, respectively, and produces unsaturated saccharides as the first degradation products. A novel unsaturated glucuronyl hydrolase (glycuronidase), which was induced in the bacterial cells grown on either gellan or xanthan, was found to act on the tetrasaccharide of unsaturated glucuronyl-glucosyl-rhamnosyl-glucose produced from gellan by gellan lyase, and the enzyme and its gene were isolated from gellan-grown cells. The nucleotide sequence showed that the gene contained an ORF consisting of 1131 base pairs coding a polypeptide with a molecular weight of 42,859. The purified enzyme was a monomer with a molecular mass of 42 kDa and was most active at pH 6.0 and 45 degrees C. Because the enzyme can act not only on the gellan-degrading product by gellan lyase, but also on unsaturated chondroitin and hyaluronate disaccharides produced by chondroitin and hyaluronate lyases, respectively, it is considered that the unsaturated glucuronyl hydrolase plays specific and ubiquitous roles in the degradation of oligosaccharides with unsaturated uronic acid at the nonreducing terminal produced by polysaccharide lyases.  相似文献   

5.
When the bacterium Bacillus sp. strain GL1 was grown in a medium containing xanthan as the carbon source, the viscosity of the medium decreased in association with growth, showing that the bacterium had xanthan-depolymerizing enzymes. One of the xanthan-depolymerizing enzymes (xanthan lyase) was present in the medium and was found to be induced by xanthan. The xanthan lyase purified from the culture fluid was a monomer with a molecular mass of 75 kDa, and was most active at pH 5.5 and 50°C. The enzyme was highly specific for xanthan and produced pyruvylated mannose. The result indicates that the enzyme cleaved the linkage between the terminal pyruvylated mannosyl and glucuronyl residues in the side chain of xanthan.  相似文献   

6.
Unsaturated beta-glucuronyl hydrolase of Bacillus sp. GL1 catalyzes the hydrolytic release of unsaturated glucuronic acids from oligosaccharides produced through the reactions of polysaccharide lyases such as gellan, xanthan, hyaluronate, and chondroitin lyases. An overexpression system for the enzyme was constructed in Escherichia coli cells involving regulation of the enzyme gene under the T7 promoter and terminator. The expression level of the enzyme in E. coli cells was 250-fold higher than that in Bacillus sp. GL1 cells. The enzyme expressed in E. coli cells was purified and characterized. The optimal pH and temperature, and substrate specificity of the purified enzyme were similar to those of the native enzyme from Bacillus sp. GL1 cells, although the enzyme expressed in E. coli cells underwent self-assembly into polymeric forms through the formation of intermolecular disulfide bonds. Circular dichroism analysis indicated that the secondary structure of the enzyme was rich in alpha-helices. Genes showing high identity (over 40% identity) with that of the enzyme were found in the genomes of some pathogenic bacteria, such as Streptococcus pyogenes and Streptococcus pneumoniae, which cause serious diseases (e.g., meningitis and pneumonia). Therefore, the enzyme of Bacillus sp. GL1 and the streptococcal proteins form a new glycoside hydrolase family, 88.  相似文献   

7.
D-Amino acid aminotransferase was found in several thermophilic Bacillus species and purified to homogeneity from the best producer, Bacillus sp. YM-1, which was newly isolated from a sauna dust. The enzyme has a molecular weight of about 62,000 and consists of two subunits identical in molecular weight (30,000). It catalyzes transamination between various D-amino acids and alpha-keto acids, although the substrate specificity is narrower than the enzyme from the mesophile, Bacillus sphaericus (Yonaha, K., Misono, H., Yamamoto, T., and Soda, K. (1975) J. Biol. Chem. 250, 6983-6989). The Bacillus sp. YM-1 enzyme is most active at 60 degrees C and stable at high temperatures. Automated Edman degradation provided the N-terminal sequence of the first 20 amino acids, and carboxypeptidase Y digestion provided the C-terminal sequence of the last 3 amino acids. The amino acid sequence in the vicinity of the lysyl residue, Lys(Pxy), that binds pyridoxal 5'-phosphate was determined as Cys-Asp-Ile-Lys(Pxy)-Ser-Leu-Asn-Leu-Leu-Gly-Ala-Val-Leu-Ala-Lys- from the pyridoxyl peptide obtained by digestion with trypsin. The active site sequence is markedly different from those of L-amino acid aminotransferases and other pyridoxal 5'-phosphate-dependent enzymes.  相似文献   

8.
Xanthan lyase, a member of polysaccharide lyase family 8, is a key enzyme for complete depolymerization of a bacterial heteropolysaccharide, xanthan, in Bacillus sp. GL1. The enzyme acts exolytically on the side chains of the polysaccharide. The x-ray crystallographic structure of xanthan lyase was determined by the multiple isomorphous replacement method. The crystal structures of xanthan lyase and its complex with the product (pyruvylated mannose) were refined at 2.3 and 2.4 A resolution with final R-factors of 17.5 and 16.9%, respectively. The refined structure of the product-free enzyme comprises 752 amino acid residues, 248 water molecules, and one calcium ion. The enzyme consists of N-terminal alpha-helical and C-terminal beta-sheet domains, which constitute incomplete alpha(5)/alpha(5)-barrel and anti-parallel beta-sheet structures, respectively. A deep cleft is located in the N-terminal alpha-helical domain facing the interface between the two domains. Although the overall structure of the enzyme is basically the same as that of the family 8 lyases for hyaluronate and chondroitin AC, significant differences were observed in the loop structure over the cleft. The crystal structure of the xanthan lyase complexed with pyruvylated mannose indicates that the sugar-binding site is located in the deep cleft, where aromatic and positively charged amino acid residues are involved in the binding. The Arg(313) and Tyr(315) residues in the loop from the N-terminal domain and the Arg(612) residue in the loop from the C-terminal domain directly bind to the pyruvate moiety of the product through the formation of hydrogen bonds, thus determining the substrate specificity of the enzyme.  相似文献   

9.
Monoacylglycerol lipase [MGLP, EC 3.1.1.23] is produced intracellularly by the moderately thermophilic Bacillus sp. strain H-257. The gene encoding MGLP was cloned, sequenced, and expressed in Escherichia coli. A genomic library of Bacillus sp. strain H-257, prepared in the plasmid vector pACYC184, was screened with a 0.2-kbp DNA fragment amplified by the polymerase chain reaction (PCR) with oligonucleotide primers designed based on the amino acid sequence of a purified MGLP. The plasmid pMGLP31, identified by hybridization with the amplified DNA fragment, contained a 5.3-kbp insert from Bacillus sp. strain H-257 DNA. Sequence analysis of the MGLP gene revealed an open reading frame encoding MGLP consisting of 250 amino acids, with a calculated molecular mass of 27.4 kDa. The deduced amino acid sequence of MGLP contained the consensus pentapeptide (-Gly-Xaa-Ser-Xaa-Gly-), which is conserved among lipases, esterases, and serine proteases. The MGLP is homologous to a putative esterase/lipase from Streptomyces coelicolor (41.8% homology). When pMGLP31 was introduced into E. coli DH1, the transformants produced MGLP intracellularly as an active form to an approximately 13.8-fold greater extent than Bacillus sp. strain H-257. The purified recombinant MGLP was shown to be identical to the native enzyme in terms of chromatographic behavior, isoelectric point, and physicochemical and catalytic properties.  相似文献   

10.
A mutanase (alpha-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 degrees C to 50 degrees C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

11.
A low-molecular-weight, high-alkaline pectate lyase (pectate transeliminase, EC 4.2.2.2) was found in an alkaline culture of Bacillus sp. strain KSM-P15, purified to homogeneity, and crystallized. The enzyme had a relative molecular weight of approximately 20,300 as measured by sedimentation equilibrium, with a sedimentation coefficient (s20,w0) of 1.73 S. It was a basic protein with an isoelectric point of pH 10.3, and the alpha-helical content was only 6.6%. In the presence of Ca2+ ions, the enzyme degraded polygalacturonic acid in a random manner to yield 4,5-unsaturated oligo-galacturonides and had its optimal activity around pH 10.5 and 50-55 degrees C. It also had a protopectinase-like activity on cotton fibers. The N-terminal amino acid sequences of the intact protein (28 amino acids) and its two lysyl endopeptidase-cleaved peptide fragments (8 and 12 amino acids) had very low sequence similarity with pectate lyases reported to date. These results strongly suggest that the pectate lyase of Bacillus sp. strain KSM-P15 may be a novel enzyme and belongs in a new family.  相似文献   

12.
A basic xylanase was purified from the culture supernatant of thermoalkaliphilic Bacillus sp. strain TAR-1. Its molecular mass and isoelectric point were 23 kDa and > pH 9.3, respectively. The enzyme showed a broad pH profile and was optimally active at 70 degrees C. Analyses of xylan-degradation products and N-terminal amino acid sequence revealed that the enzyme would be a family 11/G endoxylanase.  相似文献   

13.
The genes (rhaA and rhaB) for two alpha-L-rhamnosidases of Bacillus sp. strain GL1, which assimilates a bacterial polysaccharide (gellan), were cloned from a genomic DNA library of the bacterium constructed in Escherichia coli, and the nucleotide sequences of the genes were determined. Gene rhaA (2661 bp) contained an open reading frame (ORF) encoding a protein (RhaA: 886 amino acids) with a molecular weight (MW) of 98280. Gene rhaB (2871 bp) contained an ORF encoding a protein (RhaB: 956 amino acids) with a MW of 106049. RhaA exhibited significant identity (41%) with alpha-L-rhamnosidase of Clostridium stercorarium, while RhaB showed slight homology with enzymes from other sources. An overexpression system for the two enzymes was constructed in E. coli, and the enzymes were purified and characterized. Both RhaA and RhaB were highly specific for rhamnosyl saccharides, including gellan disaccharide (rhamnosyl glucose) and naringin, and released rhamnose from substrates most efficiently at pH 6.5-7.0 and 40 degrees C. Bacillus sp. strain GL1 cells grown in a gellan medium produced only RhaB, indicating that RhaB plays a crucial role in the complete metabolism of gellan.  相似文献   

14.
A fusion of DNA sequences encoding the SPO2 promoter, the alpha-amylase signal sequence from Bacillus amyloliquefaciens, and the mature part of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) was constructed on a Bacillus subtilis multicopy vector. Bacillus cells of the protease-deficient strain DB104 harboring this vector produced and secreted the plant enzyme alpha-galactosidase up to levels of 1,700 U/liter. A growth medium suppressing the residual proteolytic activity of strain DB104 was used to reach these levels in a fermentor. Purification of the secreted product followed by NH2-terminal amino acid sequencing showed that the alpha-amylase signal sequence had been processed correctly. The molecular mass of the product estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was slightly lower than that of the plant purified enzyme, which is most likely due to glycosylation of the latter. The alpha-galactosidase product was active both on the artificial substrate para-nitrophenyl-alpha-D-galactopyranoside and on the galactomannan substrate, guar gum. The activity of this Bacillus sp.-produced enzyme was similar to that of the glycosylated enzyme purified from guar seeds, indicating that glycosylation has no essential function for enzyme activity.  相似文献   

15.
A fusion of DNA sequences encoding the SPO2 promoter, the alpha-amylase signal sequence from Bacillus amyloliquefaciens, and the mature part of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) was constructed on a Bacillus subtilis multicopy vector. Bacillus cells of the protease-deficient strain DB104 harboring this vector produced and secreted the plant enzyme alpha-galactosidase up to levels of 1,700 U/liter. A growth medium suppressing the residual proteolytic activity of strain DB104 was used to reach these levels in a fermentor. Purification of the secreted product followed by NH2-terminal amino acid sequencing showed that the alpha-amylase signal sequence had been processed correctly. The molecular mass of the product estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was slightly lower than that of the plant purified enzyme, which is most likely due to glycosylation of the latter. The alpha-galactosidase product was active both on the artificial substrate para-nitrophenyl-alpha-D-galactopyranoside and on the galactomannan substrate, guar gum. The activity of this Bacillus sp.-produced enzyme was similar to that of the glycosylated enzyme purified from guar seeds, indicating that glycosylation has no essential function for enzyme activity.  相似文献   

16.
The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from the alkalophilic Bacillus sp. strain no. 17-1 was cloned in Escherichia coli. The cloned CGTase gene consisted of a single open reading frame which would encode a polypeptide of 713 amino acids, and the first 27 amino acid residues comprised a signal peptide. The nucleotide sequence and the amino acid sequence of this CGTase (CGTase 17-1) gene had strong homology with those of the CGTase (CGTase 38-2) gene previously cloned in our laboratory from the alkalophilic Bacillus sp. strain no. 38-2, although the enzymic properties of the CGTase 17-1 were distinct from those of the CGTase 38-2. To analyse those enzymic properties further, we constructed 12 chimeric CGTases using three restriction nuclease sites and compared the enzymic properties of the chimeric CGTases. The N-terminal part of the enzyme was important for heat stability, and the pH-activity profile was influenced by both the N- and the C-terminal parts. A third segment was less important for enzymic properties.  相似文献   

17.
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80 degrees C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.  相似文献   

18.
Xanthan is a bacterial heteropolysaccharide composed of pentasaccharide repeating units, i.e., a cellobiose as a backbone and a trisaccharide consisting of two mannoses and one glucuronic acid as a side chain. Nonreducing terminal mannose residues of xanthan side chains are partially pyruvated. Bacillus sp. GL1 xanthan lyase, a member of polysaccharide lyase family 8, acts specifically on pyruvated side chains of xanthan and yields pyruvated mannose through a beta-elimination reaction by using a single Tyr255 residue as base and acid catalysts. Here we show structural factors for substrate recognition by xanthan lyase through X-ray crystallographic and mutational analyses. The enzyme accommodates mannose and pyruvated mannose at the -1 subsite, although both inhibitor and dissociation constants of the two monosaccharides indicated that the affinity of pyruvated mannose for xanthan lyase is much higher than that of mannose. The high affinity of pyruvated mannose is probably due to the formation of additional hydrogen bonds between the carboxyl group of pyruvated mannose and amino acid residues of Tyr315 and Arg612. Site-directed mutagenesis of the two residues demonstrated that Arg612 is a key residue in recognizing pyruvated mannose. Arg612 is located in the protruding loop covering the substrate, suggesting that the loop functions as a lid that is responsible for the proper accommodation of the substrate at the active site.  相似文献   

19.
芽孢杆菌α-淀粉酶基因的克隆、表达和酶学性质分析   总被引:1,自引:0,他引:1  
在仔猪结肠内容物中分离出一株能利用淀粉的芽孢杆菌Bacillussp.WS06,构建了全基因组DNA文库,从中筛选出α_淀粉酶基因amyF,分析测定了其核苷酸序列并进行了表达;其中amyF编码的蛋白有526个氨基酸、分子量为58.6kD;它与已报道的Bacillusmegaterium的α_淀粉酶序列有93%的同源性。经过氨基酸序列比较分析还发现,AmyF含有淀粉酶家族中4个高度保守的酶催化活性区。经多步纯化,重组酶的比活共提高了22.2倍,获得凝胶电泳均一的蛋白样品;经SDS_PAGE检测,AmyF酶分子量为57kD。该酶的最适反应温度为55℃~60℃,酶的最适反应pH为7.0,在温度不超过55℃时,酶活较稳定;AmyF能迅速降解淀粉生成麦芽寡糖,属于内切糖苷酶。  相似文献   

20.
We report here the molecular cloning and expression of a hemolytic sphingomyelinase from an aquatic bacterium, Pseudomonas sp. strain TK4. The sphingomyelinase gene was found to consist of 1,548 nucleotides encoding 516 amino acid residues. The recombinant 57.7-kDa enzyme hydrolyzed sphingomyelin but not phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, or phosphatidylethanolamine, indicating that the enzyme is a sphingomyelin-specific sphingomyelinase C. The hydrolysis of sphingomyelin by the enzyme was found to be most efficient at pH 8.0 and activated by Mn(2+). The enzyme shows quite a broad specificity, i.e., it hydrolyzed 4-nitrobenz-2-oxa-1,3-diazole (NBD)-sphingomyelin with short-chain fatty acids and NBD-sphingosylphosphorylcholine, the latter being completely resistant to hydrolysis by any sphingomyelinase reported so far. Significant sequence similarities were found in sphingomyelinases from Bacillus cereus, Staphylococcus aureus, Listeria ivanovii, and Leptospira interrogans, as well as a hypothetical protein encoded in Chromobacterium violaceum, although the first three lacked one-third of the sequence corresponding to that from the C terminus of the TK4 enzyme. Interestingly, the deletion mutant of strain TK4 lacking 186 amino acids at the C-terminal end hydrolyzed sphingomyelin, whereas it lost all hemolytic activity, indicating that the C-terminal region of the TK4 enzyme is indispensable for the hemolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号