首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y L Xu  D A Gage    J A Zeevaart 《Plant physiology》1997,114(4):1471-1476
Arabidopsis thaliana (L.) Heynh. is a quantitative long-day (LD) rosette plant in which stem growth is mediated by gibberellins (CAs). Application of GAs to plants in short-day (SD) conditions resulted in rapid stem elongation and flower formation, with GA4 and GA9 being equally effective, and GA1 showing lower activity. The effects of photoperiod on the levels of endogenous GAs were measured by combined gas chromatography-mass spectrometry with selected ion monitoring. When plants were transferred from SD to LD conditions there was a slight decrease in the level of GA53 and an increase in the levels of C19-GAs, GA9, GA20, GA1, and GA8, indicating that GA 20-oxidase activity is stimulated in LD conditions. Expression of GA5, which encodes GA 20-oxidase, was highest in elongating stems and was correlated with the rate of stem elongation. By contrast, GA4, which encodes 3 beta-hydroxylase, showed low expression in stems and its expression was not correlated with the rate of stem elongation. We conclude that stem elongation in LD conditions is at least in part due to increased expression of GA5, whereas expression of GA4 is not under photoperiodic control.  相似文献   

2.
3.
In the gibberellin (GA) biosynthesis pathway, 20-oxidase catalyzes the oxidation and elimination of carbon-20 to give rise to C19-GAs. All bioactive GAs are C19-GAs. We have overexpressed a cDNA encoding 20-oxidase isolated from Arabidopsis seedlings in transgenic Arabidopsis plants. These transgenic plants display a phenotype that may be attributed to the overproduction of GA. The phenotype includes a longer hypocotyl, lighter-green leaves, increased stem elongation, earlier flowering, and decreased seed dormancy. However, the fertility of the transgenic plants is not affected. Increased levels of endogenous GA1, GA9, and GA20 were detected in seedlings of the transgenic line examined. GA4, which is thought to be the predominantly active GA in Arabidopsis, was not present at increased levels in this line. These results suggest that the overexpression of this 20-oxidase increases the levels of some endogenous GAs in transgenic seedlings, which causes the GA-overproduction phenotype.  相似文献   

4.
To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA(12) at C-20 to the C(19) compound GA(9), a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the beta-glucuronidase (GUS) gene. In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds.  相似文献   

5.
6.
Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod   总被引:2,自引:0,他引:2  
Lee DJ  Zeevaart JA 《Planta》2007,226(1):35-44
  相似文献   

7.
8.
9.
Seasonal control of flowering often involves leaf sensing of daylength coupled to time measurement and generation and transport of florigenic signals to the shoot apex. We show that transmitted signals in the grass Lolium temulentum may include gibberellins (GAs) and the FLOWERING LOCUS T (FT) gene. Within 2 h of starting a florally inductive long day (LD), expression of a 20-oxidase GA biosynthetic gene increases in the leaf; its product, GA(20), then increases 5.7-fold versus short day; its substrate, GA(19), decreases equivalently; and a bioactive product, GA(5), increases 4-fold. A link between flowering, LD, GAs, and GA biosynthesis is shown in three ways: (1) applied GA(19) became florigenic on exposure to LD; (2) expression of LtGA20ox1, an important GA biosynthetic gene, increased in a florally effective LD involving incandescent lamps, but not with noninductive fluorescent lamps; and (3) paclobutrazol, an inhibitor of an early step of GA biosynthesis, blocked flowering, but only if applied before the LD. Expression studies of a 2-oxidase catabolic gene showed no changes favoring a GA increase. Thus, the early LD increase in leaf GA(5) biosynthesis, coupled with subsequent doubling in GA(5) content at the shoot apex, provides a substantial trail of evidence for GA(5) as a LD florigen. LD signaling may also involve transport of FT mRNA or protein because expression of LtFT and LtCONSTANS increased rapidly, substantially (>80-fold for FT), and independently of GA. However, because a LD from fluorescent lamps induced LtFT expression but not flowering, the nature of the light response of FT requires clarification.  相似文献   

10.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

11.
Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography – mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62–0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.  相似文献   

12.
13.
Cell-free extracts capable of converting [14C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [14C]-labeled GAs, prepared enzymically from [14C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA12 → GA53 → GA44 → GA19 → GA20. The pH optima for the enzymic conversions of [14C]GA53, [14C]GA44 and [14C]GA19 were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe2+, α-ketoglutarate and O2 for activity, and ascorbate stimulated the conversion of [14C]GA53 and [14C]GA19. Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA53 and GA19 are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA44 remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA20 content of spinach plants in LD than in SD.  相似文献   

14.
棉花GA 20-氧化酶基因转毛白杨的研究   总被引:1,自引:0,他引:1  
以毛白杨为材料,研究了超量表达赤霉素合成酶基因(GA20-氧化酶基因)对毛白杨根、茎和叶的生长以及组织结构的影响,结果显示,表达GA20-氧化酶基因能显著提高毛白杨茎的生长,但是对根系的生长带来负面影响.同时,超量表达GA20-氧化酶基因促进了毛白杨茎木质部的生长,抑制了韧皮部和皮层的生长.研究结果表明GA20-氧化酶基因在毛白杨遗传改良中具有一定的应用价值.  相似文献   

15.
Some gibberellin (GA) analogues, especially with C-16,17 modifications of GA(5), can inhibit growth of plants apparently by acting as competitors with the endogenous substrate of GA biosynthetic enzymes. Here, we directly confirm the competitive action of GA derivatives but also show that some analogues may retain significant bioactivity. A recombinant 3-oxidase from pea, which converts GA(20) to bioactive GA(1), was inhibited by GA(5), and 16,17-dihydro-GA(5) derivatives, especially if the C-17 alkyl chain length was increased by up to three carbons or if the C-13 hydroxyl was acetylated. Genetic confirmation that GA(5) analogues target 3-oxidases in vivo was provided by comparing the growth response of a WT (LE) pea with a 3-oxidase mutant (le-1). Two pea 2-oxidases that inactivate bioactive GAs, were inhibited by GA(1) and GA(3) but were generally insensitive to GA(5) analogues. alpha-Amylase production by barley half-seeds in response to GA analogues provided a method to study their action when effects on GA biosynthesis were excluded. This bioactivity assay showed that 16,17-dihydro GA(5) analogues have some inherent activity but mostly less than for GA(5) (5-50-fold), which in turn was 100-fold less active than GA(1) and GA(3). However, although C-17 alkyl derivatives with one or two added carbons showed little bioactivity and were purely 3-oxidase inhibitors, adding a third carbon (the 17-n-propyl-16,17-dihydro GA(5) analogue) restored bioactivity to that of GA(5). Furthermore, this analogue has lost its capacity to inhibit stem elongation of Lolium temulentum (Mander et al., Phytochemistry 49:1509-1515, 1998a), although it strongly inhibits the 3-oxidase. Thus, the effectiveness of a GA derivative as a growth retardant will reflect the balance between its bioactivity and its capacity to inhibit the terminal enzyme of GA biosynthesis. The weaker growth inhibition in dicots including pea (approximately 10%) than in monocots such as L. temulentum (>35%) is suggestive of taxonomic differences in the bioactivity of GAs and/or their effects on GA biosynthesis.  相似文献   

16.
17.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

18.
Some potato species require a short-day (SD) photoperiod for tuberization, a process that is negatively affected by gibberellins (GAs). Here we report the isolation of StGA3ox2, a gene encoding a GA 3-oxidase, whose expression is increased in the aerial parts and is repressed in the stolons after transfer of photoperiod-dependent potato plants to SD conditions. Over-expression of StGA3ox2 under control of constitutive or leaf-specific promoters results in taller plants which, in contrast to StGA20ox1 over-expressers previously reported, tuberize earlier under SD conditions than the controls. By contrast, StGA3ox2 tuber-specific over-expression results in non-elongated plants with slightly delayed tuber induction. Together, our experiments support that StGA3ox2 expression and gibberellin metabolism significantly contribute to the tuberization time in strictly photoperiod-dependent potato plants.  相似文献   

19.
20.
A major catabolic pathway for gibberellin (GA) is initiated by 2beta-hydroxylation, a reaction catalyzed by GA 2-oxidase. We have isolated and characterized a cDNA, designated Oryza sativa GA 2-oxidase 1 (OsGA2ox1) from rice (Oryza sativa L. cv Nipponbare) that encodes a GA 2-oxidase. The encoded protein, produced by heterologous expression in Escherichia coli, converted GA(1), GA(4), GA(9), GA(20), and GA(44) to the corresponding 2beta-hydroxylated products GA(8), GA(34), GA(51), GA(29), and GA(98), respectively. Ectopic expression of the OsGA2ox1 cDNA in transgenic rice inhibited stem elongation and the development of reproductive organs. These transgenic plants were deficient in endogenous GA(1). These results indicate that OsGA2ox1 encodes a GA 2-oxidase, which is functional not only in vitro but also in vivo. OsGA2ox1 was expressed in shoot apex and roots but not in leaves and stems. In situ hybridization analysis revealed that OsGA2ox1 mRNA was localized in a ring at the basal region of leaf primordia and young leaves. This ring-shaped expression around the shoot apex was drastically decreased after the phase transition from vegetative to reproductive growth. It was absent in the floral meristem, but it was still present in the lateral meristem that remained in the vegetative phase. These observations suggest that OsGA2ox1 controls the level of bioactive GAs in the shoot apical meristem; therefore, reduction in its expression may contribute to the early development of the inflorescence meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号