首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The interaction in vitro between adenoviral histone-like proteins and DNA in the presence of chromatin assembly factors was investigated. Viral core protein VII or its precursor pVII was incubated with DNA in the presence of an extract of HeLa cell chromatin, which mediates nucleosome assembly from histones and DNA. We have demonstrated that either protein can introduce superhelical turns into relaxed closed-circular DNA and that the presence of chromatin extract is necessary for the supertwisting effect. A greater density of superhelical turns was produced by pVII than by VII, but neither protein-DNA interaction resulted in the "physiological" amount of supertwisting produced by histones. The inhibition of histone-induced supercoiling by both proteins and the protection of turns in supertwisted starting material are also described. The nucleosome assembly factor, nucleoplasmin, fails to mediate the introduction of superhelical turns by VII or pVII.  相似文献   

2.
The very lysine rich histone, H1, isolated from a variety of sources interacts preferentially with superhelical DNA compared to relaxed DNA duplexes. The nature of this specific interaction has been investigated by studying the ability of various purified fragments of H1 histone from calf thymus to recognize and bind superhelical DNA. The data suggest that the globular region of the H1 histone molecule (amino acid residues 72-106) is involved in the recognition of superhelical DNA. Thus, the H1 histone carboxy-terminal fragment, 72-212, resembles native H1 histone both quantitatively and qualitatively in its ability to discriminate between and bind to superhelical and relaxed DNA while the H1 histone carboxy-terminal fragment, residues 106-212, has lost this specificity, binding superhelical and relaxed DNA equally well. Furthermore, under conditions in which the globular region of the intact H1 histone has been unfolded, the molecule loses its ability to discriminate between superhelical and relaxed DNA, and binds both forms of DNA equally.  相似文献   

3.
The protein DEK is an abundant and ubiquitous chromatin protein in multicellular organisms (not in yeast). It is expressed in more than a million copies/nucleus of rapidly proliferating mammalian cells. DEK has two DNA binding modules of which one includes a SAP box, a sequence motif that DEK shares with a number of other chromatin proteins. DEK has no apparent affinity to specific DNA sequences, but preferentially binds to superhelical and cruciform DNA, and induces positive supercoils into closed circular DNA. The available evidence strongly suggests that DEK could function as an architectural protein in chromatin comparable to the better known classic architectural chromatin proteins, the high-mobility group or HMG proteins.  相似文献   

4.
Chloroplast DNA (cpDNA) is packed into discrete structures called chloroplast nucleoids (cp-nucleoids). The structure of cpDNA is thought to be important for its maintenance and regulation. In bacteria and mitochondria, histone-like proteins (such as HU and Abf2, respectively) are abundant and play important roles in DNA organization. However, a primary structural protein has yet to be found in cp-nucleoids. Here, we identified an abundant DNA binding protein from isolated cp-nucleoids of the primitive red alga Cyanidioschyzon merolae. The purified protein had sequence homology with the bacterial histone-like protein HU, and it complemented HU-lacking Escherichia coli mutants. The protein, called HC (histone-like protein of chloroplast), was encoded by a single gene (CmhupA) in the C. merolae chloroplast genome. Using immunofluorescence and immunoelectron microscopy, we demonstrated that HC was distributed uniformly throughout the entire cp-nucleoid. The protein was expressed constitutively throughout the cell and the chloroplast division cycle, and it was able to condense DNA. These results indicate that HC, a bacteria-derived histone-like protein, primarily organizes cpDNA into the nucleoid.  相似文献   

5.
Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The high affinity binding sites are important for the regulation of a wide range of cellular processes. A remarkable feature of IHF is that it employs an indirect readout mechanism to bind and wrap DNA at both the nonspecific and high affinity (sequence-dependent) DNA sites. In this study we assessed the contributions of pre-formed and protein-induced DNA conformations to the energetics of IHF binding. Binding energies determined experimentally were compared with energies predicted for the IHF-induced deformation of the DNA helix (DNA deformation energy) in the IHF-DNA complex. Combinatorial sets of de novo DNA sequences were designed to systematically evaluate the influence of sequence-dependent structural characteristics of the conserved IHF recognition elements of the consensus DNA sequence. We show that IHF recognizes pre-formed conformational characteristics of the consensus DNA sequence at high affinity sites, whereas at all other sites relative affinity is determined by the deformational energy required for nearest-neighbor base pairs to adopt the DNA structure of the bound DNA-IHF complex.  相似文献   

6.
Isolation and characterization of Z-DNA binding proteins from wheat germ   总被引:11,自引:0,他引:11  
E M Lafer  R Sousa  B Rosen  A Hsu  A Rich 《Biochemistry》1985,24(19):5070-5076
The preparation of a heterogeneous non-histone protein extract from wheat germ utilizing Br-poly(dG-dC).poly(dG-dC) (Z-DNA) affinity chromatography is described. The binding characteristics of antibodies against Z-DNA are used as a model system to define important criteria that the DNA binding behavior of a Z-DNA binding protein should display. We show that the wheat germ extract contains DNA binding proteins specific for left-handed Z-DNA by these criteria. The affinity of the proteins measured by competition experiments was approximately 10(5) greater for Br-poly(dG-dC).poly(dG-dC) (Z-DNA) than for poly(dG-dC).poly(dG-dC) (B-DNA). The affinity of the proteins for plasmid DNA increases with increasing negative superhelicity which is known to stabilize Z-DNA. The proteins are shown to compete with Z-DNA antibodies for binding to supercoiled plasmids. Finally, the affinity for two plasmids at a given superhelical density is greater for the plasmid containing an insert known to form Z-DNA than for a plasmid without the insert. The proteins exhibit a 2-3-fold greater affinity for stretches of (dC-dA)n.(dT-dG)n over stretches of (dG-dC)n.(dG-dC)n when both sequences are induced to form Z-DNA by supercoiling.  相似文献   

7.
Isolation of histone-like proteins from mitochondria of bovine heart   总被引:1,自引:0,他引:1  
Two methods for isolating and purifying histone-like proteins from mitochondria of bovine heart are described. In the first, a sonicated extract of the mitochondria was fractionated in three chromatography steps, including affinity chromatography on DNA-cellulose, to purify a protein that resembles very closely the histone-like protein (HM) of yeast mitochondria. In the second method, an acid extract of the heart mitochondria was the starting material; two other histone-like proteins were separated. Thus, as in mitochondria of Xenopus laevis, several histone-like proteins are present in mitochondria of bovine heart.  相似文献   

8.
Structural Roles of Polyoma Virus Proteins   总被引:16,自引:14,他引:2       下载免费PDF全文
The superhelical, closed circular form of polyoma deoxyribonucleic acid (DNA) (Co 1) is bound in a 25S DNA-protein complex to the viral histone-like proteins after alkaline disruption of the virion. Nicked viral DNA or linear DNA are largely free of protein. Most of the viral protein disruption is in the form of capsomeres, sedimenting principally at 10S and 7S. Despite the relatively constant ratio of 10S to 7S material in many preparations, (1:5.5 to 1:6.0, respectively), the two classes of capsomeres are indistinguishable by electron microscopy and contain only P(2), P(3), and P(4) in molar ratios of approximately 5:1:1 or 6:1:1, respectively. Material with sedimentation rates of approximately 1 to 3S is enriched for P(5) and contains small amounts of P(2), P(3), and P(4). During the in vitro reassembly of DNA-free, shell-like particles from disrupted virus, proteins P(1), P(2), P(3), P(4), and P(7) are reincorporated efficiently, whereas P(5) and P(6) are not. The presence in empty reassembled particles of histone-like protein, expecially P(7), implies that at least this one of the minor protein components of the virion may participate in protein-protein interactions with other components of the capsid.  相似文献   

9.
The replication of plasmid pBR322 DNA has been reconstituted with purified proteins from Escherichia coli. Initiation of the leading-strand requires RNA polymerase holoenzyme, DNA polymerase I, RNase H, and DNA gyrase. Initiation of the lagging-strand requires the primosomal proteins (the dnaB, dnaC, and dnaG proteins, replication factor Y (protein n') and proteins i, n, and n") and the single-stranded DNA binding protein. DNA polymerase III holoenzyme is required for extensive elongation of the nascent DNA chains. The products of this replication reaction are primarily nonsegregated daughter molecules. However, the addition of small amounts of soluble extract from E. coli results in the completion and segregation of these molecules to give mature form I DNA, suggesting that additional factors are required for this process. Topoisomerase I is necessary to make the replication system specific for pBR322 DNA as a template, indicating that the linking number of the DNA, determined by an equilibrium between the opposing activities of topoisomerase I and DNA gyrase, plays a crucial role in determining the reactivity of the DNA molecule toward initiating DNA replication. The function of the proteins involved in the replication of this closed-circular, double-stranded, superhelical DNA is discussed.  相似文献   

10.
11.
A simple and rapid method for isolation of nuclei from Gymnodinium mikimotoi Miyake et Kominami ex Oda is described along with chemical characterization of the nuclei. The isolated nuclei were completely free of whole cells, 99.96% free of cytoplasmic contamination, and were collected with a yield of 40% from harvested whole cells. Each nucleus contained 47 pg of DNA and the ratio of DNA to acid-soluble proteins to acid-insoluble proteins was 1:0.25:1.21, respectively. SDS electrophoresis of acid-extracted proteins showed one histone-like protein, which we termed HGm, with an apparent molecular mass of 12 kDa. V8 protease digestion analysis of HGm, the histone-like protein from Crypthecodinium cohnii (HCc), and two histone-like proteins from Gymnodinium dorsum , showed that the HGm digestion pattern was more similar to that of HCc than to that of either of the G. dorsum histone-like proteins.  相似文献   

12.
Ellen TP  van Holde KE 《Biochemistry》2004,43(24):7867-7872
The interaction of linker histone H1 with both linear and superhelical double-stranded DNA has been investigated at low ionic strengths. Gel mobility retardation experiments demonstrate strikingly different behavior for the two forms of DNA. First, the experiments strongly suggest that linker histone binds to superhelical DNA in a negatively cooperative mode. In contrast, binding of linker histone to linear DNA under the conditions employed here shows no cooperativity. Second, binding of linker histone to linear DNA results in aggregation of histone-DNA complexes, even at very low levels of input histone H1. Because H1 has been shown to interact as a monomer, this aggregation is evidence of the divalent character of the linker histone, for without H1's ability to bind to two duplex strands of DNA, aggregation could not occur. Although aggregation can be made to occur with superhelical DNA, it can do so only at near-saturation levels of input histone H1. Finally, in direct competition, linker histone binds to superhelical DNA to the complete exclusion of linear DNA, indicating that the linker histone's function is related to the crossover structures that differentiate superhelical DNA from linear DNA. We develop a model that explains the observed behavior of binding of linker histone to superhelical DNA that is consistent with both the divalent character of the linker histone and the negative cooperativity by which linker histone and superhelical DNA interact.  相似文献   

13.
Analysis of E.coli chromosomes isolated under conditions similar to those used for isolation of eukaryotic chromatin has shown that: 1) The proteins of highly purified E.coli deoxyribonucleoprotein are mainly in addition to RNA polymerase two specific histone-like proteins of apparent molecular weight of 17,000 and 9,000 (proteins 1 and 2, respectively). 2) Proteins 1 and 2 occur in approximately equal molar amounts in the isolated E.coli chromosome, and their relative content corresponds to one molecule of protein 1 plus one molecule of protein 2 per 150-200 base pairs of DNA. 3) There are no long stretches of naked DNA in the purified E.coli deoxyribonucleoprotein suggesting a fairly uniform distribution of the proteins 1 and 2 along DNA. 4) The protein 2 is apparently identical to the DNA-binding protein HU which was isolated previously /1/ from extracts of E.coli cells. 5) Digestion of the isolated E.coli chromosomes with staphylococcal nuclease proceeds through discrete deoxyribonucleoprotein intermediates (in particular, at approximately 120 base pairs) which contain both proteins 1 and 2. However, since no repeating multimer structure was observed so far in nuclease digests of the E.coli chromosome, it seems premature to draw definite conclusions about possible similarities between the nucleosomal organization of the eukaryotic chromatin and the E.coli chromatin structure.Images  相似文献   

14.
A Jaffe  D Vinella    R D'Ari 《Journal of bacteriology》1997,179(11):3494-3499
Escherichia coli hupA hupB double mutants, lacking both subunits (HU1 and HU2) of the histone-like protein HU, accumulate secondary mutations. In some genetic backgrounds, these include mutations in the minCDE operon, inactivating this system of septation control and resulting in the formation of minicells. In the course of the characterization of hupA hupB mutants, we observed that the simultaneous absence of the HU2 subunit and the MukB protein, implicated in chromosome partitioning, is lethal for the bacteria; the integrity of either HU or MukB thus seems to be essential for bacterial growth. The HU protein has been shown to be involved in DNA replication in vitro; we show here that its inactivation in the hupA hupB double mutant disturbs the synchrony of replication initiation in vivo, as evaluated by flow cytometry. Our results suggest that global nucleoid structure, determined in part by the histone-like protein HU, plays a role in DNA replication initiation, in proper chromosome partitioning directed by the MukFEB proteins, and in correct septum placement directed by the MinCDE proteins.  相似文献   

15.
Complexes of histones H1 with superhelical SV40 DNA obtained by direct mixing were studied in 0.1 SSC buffer corresponding to 0.02 M Na+. Depending on the molar input ratio H1/DNA three classes of sedimenting species were observed: (1) a component sedimenting similar to superhelical DNA with a sedimentation coefficient s2o,w of 25 S observable up to 335 Mol H1/Mol DNA (w/w = 2); (2) a component with s2o,w = 120 S appearing at 135 Mol H1/Mol DNA and (3) growing amounts of heterogeneous aggregates greater than 1000 S. Electron micrographs revealed the 25 S component to consist of double-fibers formed from one DNA molecule and the 120 S component to consist of bundles of several such double-fibers. The aggregates represent cable-like structures. The addition of ethidium bromide to 25 S complexes induces the formation of bundles, if H1 is present in a quantity which alone is not sufficient to bring about this effect. This result indicates that ethidium bromide effects a redistribution of H1 molecules and that H1 is responsible for the bundle formation.  相似文献   

16.
17.
In contrast to other eukaryotes which usually express two closely related HMG1-like proteins, plant cells have multiple relatively variable proteins of this type. A systematic analysis of the DNA-binding properties of four chromosomal HMG domain proteins from maize revealed that they bind linear DNA with similar affinity. HMGa, HMGc1/2 and HMGd specifically recognise diverse DNA structures such as DNA mini-circles and supercoiled DNA. They induce DNA-bending, and constrain negative superhelical turns in DNA. In the presence of DNA, the HMG domain proteins can self-associate, whereas they are monomeric in solution. The maize HMG1-like proteins have the ability to facilitate the formation of nucleoprotein structures to different extents, since they can efficiently replace a bacterial chromatin-associated protein required for the site-specific β-mediated recombination. A variable function of the HMG1-like proteins is indicated by their differential association with maize chromatin, as judged by their ‘extractability’ from chromatin with spermine and ethidium bromide. Collectively, these findings suggest that the various plant chromosomal HMG domain proteins could be adapted to act in different nucleoprotein structures in vivo.  相似文献   

18.
Summary In addition to the set of curved DNA segments isolated previously from Escherichia coli, another set of curved DNA segments has now been isolated. To gain an insight into the functional significance of these curved DNA sequences, systematic analyses were carried out, which included not only mapping of the precise locations of the segments on the E. coli chromosome but also clarification of the gene organization in the chromosomal regions surrounding the curved DNA sequences. It was demonstrated that most of the curved DNA sequences, which have been characterized so far, appear to be located immediately upstream of the coding sequences of adjacent genes. It was also demonstrated that an E. coli histone-like protein, named H-NS (or H1a), exhibits a strong affinity for naturally occurring curved DNA sequences in regions upstream promoters.  相似文献   

19.
The interaction between nucleic acids and Escherichia coli H-NS, an abundant 15 kDa histone-like protein, has been studied by affinity chromatography, nitrocellulose filtration and fluorescence spectroscopy. Intrinsic fluorescence studies showed that the single Trp residue of H-NS (position 108) has a restricted mobility and is located within an hydrophobic region inaccessible to both anionic and cationic quenchers. Binding of H-NS to nucleic acids, however, results in a change of the microenvironment of the Trp residue and fluorescence quenching; from the titration curves obtained with addition of increasing amounts of poly(dA)-poly(dT) and poly(dC)-poly(dG) it can be estimated that an H-NS dimer in 1.5 x SSC binds DNA with an apparent Ka approximately equal to 1.1 x 10(4) M-1.bp-1. H-NS binds to double-stranded DNA with a higher affinity than the more abundant histone-like protein NS(HU) and, unlike NS, prefers double-stranded to single-stranded DNA and DNA to RNA; both monovalent and divalent cations are required for optimal binding.  相似文献   

20.
Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that are distributed in all three domains of life: bacteria, archaea, and eukaryotes. These proteins minimize hydroxyl radical formation by ferroxidase activity that converts Fe(2+) into Fe(3+) and sequesters iron by storing it as a mineral inside a protein cage. In this study, we discovered that mycobacterial DNA-binding protein 1 (MDP1), a histone-like protein, has similar activity to ferritin superfamily proteins. MDP1 prevented the Fenton reaction and protects DNA by the ferroxidase activity. The K(m) values of the ferroxidase activity by MDP1 of Mycobacterium bovis bacillus Calmette-Guérin (BCG-3007c), Mycobacterium tuberculosis (Rv2986c), and Mycobacterium leprae (ML1683; ML-LBP) were 0.292, 0.252, and 0.129 mM, respectively. Furthermore, one MDP1 molecule directly captured 81.4±19.1 iron atoms, suggesting the role of this protein in iron storage. This study describes for the first time a ferroxidase-iron storage protein outside of the ferritin superfamily proteins and the protective role of this bacterial protein from DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号