首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptotagmin I (syt), an integral protein of the synaptic vesicle membrane, is believed to act as a Ca2+ sensor for neuronal exocytosis. Syt's cytoplasmic domain consists largely of two C2 domains, C2A and C2B. In response to Ca2+ binding, the C2 domains interact with membranes, becoming partially embedded in the lipid bilayer. We have imaged syt C2AB in association with lipid bilayers under fluid, using AFM. As expected, binding of C2AB to bilayers required both an anionic phospholipid [phosphatidylserine (PS)] and Ca2+. C2AB associated with bilayers in the form of aggregates of varying stoichiometries, and aggregate size increased with an increase in PS content. Repeated scanning of bilayers revealed that as C2AB dissociated it left behind residual indentations in the bilayer. The mean depth of these identations was 1.81 nm, indicating that they did not span the bilayer. Individual C2 domains (C2A and C2B) also formed aggregates and produced bilayer indentations. Binding of C2AB to bilayers and the formation of indentations were significantly compromised by mutations that interfere with binding of Ca2+ to syt or reduce the positive charge on the surface of C2B. We propose that bilayer perturbation by syt might be significant with respect to its ability to promote membrane fusion.  相似文献   

2.
Site-directed spin labeling is used to determine the orientation and depth of insertion of the second C2 domain from synaptotagmin I (C2B) into membrane vesicles composed of phosphatidylcholine (PC) and phosphatidylserine (PS). EPR line shapes of spin-labeled mutants located with the Ca(2+)-binding loops of C2B broaden in the presence of Ca(2+) and PC/PS vesicles, indicating that these loops undergo a Ca(2+)-dependent insertion into the membrane interface. Power saturation of the EPR spectra provides a position for each spin-labeled site along the bilayer normal, and these EPR-derived distance constraints, along with a high-resolution structure of the C2B domain, are used to generate a model for the domain orientation and position at the membrane interface. Our data show that the isolated C2B domain from synaptotagmin I penetrates PC/PS membranes, and that the backbone of Ca(2+)-binding loops 1 and 3 is inserted below the level of a plane defined by the lipid phosphates. The side chains of several loop residues are within the bilayer interior, and both Ca(2+)-binding sites are positioned near a plane defined by the lipid phosphates. A Tb(3+)-based fluorescence assay is used to compare the membrane affinity of the C2B domain to that of the first synaptotagmin C2 domain (C2A). Both C2A and C2B bind PC/PS (75:25) membrane vesicles with a micromolar lipid affinity in the presence of metal ion. These results indicate that C2A and C2B have a similar membrane affinity and position when bound to PC/PS (75:25) membrane vesicles. EPR spectroscopy indicates that the C2B domain has different interactions with PC/PS membranes containing 1 mol % phosphatidylinositol 4,5-bisphosphate.  相似文献   

3.
Synaptotagmin 1 (syt1) functions as the Ca(2+) sensor in neuronal exocytosis, and it has been proposed to act by modulating lipid bilayer curvature. Here we examine the effect of the two C2 domains (C2A and C2B) of syt1 on membrane lipid order and lateral organization. In mixtures of phosphatidylcholine and phosphatidylserine (PS), attenuated total internal reflection Fourier transform infrared spectroscopy indicates that a fragment containing both domains (C2AB) or C2B alone disorders the lipid acyl chains, whereas the C2A domain has little effect upon chain order. Two observations suggest that these changes reflect a demixing of PS. First, the changes in acyl chain order are reversed at higher protein concentration; second, selective lipid deuteration demonstrates that the changes in lipid order are associated only with the PS component of the bilayer. Independent evidence for lipid demixing is obtained from fluorescence self-quenching of labeled lipid and from natural abundance (13)C NMR, where heteronuclear single quantum correlation spectra reveal Ca(2+)-dependent chemical shift changes for PS, but not for phosphatidylcholine, in the presence of the syt1 C2 domains. The ability of syt1 to demix PS is observed in a range of lipid mixtures that includes cholesterol, phosphatidylethanolamine, and varied PS content. These data suggest that syt1 might facilitate SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors)-mediated membrane fusion by phase separating PS, a process that is expected to locally buckle bilayers and disorder lipids due to the curvature tendencies of PS.  相似文献   

4.
The Ca2+-independent membrane interactions of the soluble C2 domains from synaptotagmin 1 (syt1) were characterized using a combination of site-directed spin labeling and vesicle sedimentation. The second C2 domain of syt1, C2B, binds to membranes containing phosphatidylserine and phosphatidylcholine in a Ca2+-independent manner with a lipid partition coefficient of approximately 3.0 × 102 M− 1. A soluble fragment containing the first and second C2 domains of syt1, C2A and C2B, has a similar affinity, but C2A alone has no detectable affinity to phosphatidylcholine/phosphatidylserine bilayers in the absence of Ca2+. Although the Ca2+-independent membrane affinity of C2B is modest, it indicates that this domain will never be free in solution within the cell. Site-directed spin labeling was used to obtain bilayer depth restraints, and a simulated annealing routine was used to generate a model for the membrane docking of C2B in the absence of Ca2+. In this model, the polybasic strand of C2B forms the membrane binding surface for the domain; however, this face of C2B does not penetrate the bilayer but is localized within the aqueous double layer when C2B is bound. This double-layer location indicates that C2B interacts in a purely electrostatic manner with the bilayer interface. In the presence of Ca2+, the membrane affinity of C2B is increased approximately 20-fold, and the domain rotates so that the Ca2+-binding loops of C2B insert into the bilayer. This Ca2+-triggered conformational change may act as a switch to modulate the accessibility of the polybasic face of C2B and control interactions of syt1 with other components of the fusion machinery.  相似文献   

5.
Synaptotagmin 1 (syt1) is a synaptic vesicle membrane protein that functions as the Ca2+ sensor in neuronal exocytosis. Here, site-directed spin labeling was used to generate models for the solution and membrane-bound structures of a soluble fragment of syt1 containing its two C2 domains, C2A and C2B. In solution, distance restraints between the two C2 domains of syt1 were measured using double electron-electron resonance and used in a simulated annealing routine to generate models for the structure of the tandem C2A-C2B fragment. The data indicate that the two C2 domains are flexibly linked and do not interact with each other in solution, with or without Ca2+. However, the favored orientation is one where the Ca2+-binding loops are oriented in opposite directions. A similar approach was taken for membrane-associated C2A-C2B, combining both distances and bilayer depth restraints with simulated annealing. The restraints can only be satisfied if the Ca2+ and membrane-binding surfaces of the domains are oriented in opposite directions so that C2A and C2B are docked to opposing bilayers. The result suggests that syt1 functions to bridge across the vesicle and plasma membrane surfaces in a Ca2+-dependent manner.  相似文献   

6.
Huang H  Cafiso DS 《Biochemistry》2008,47(47):12380-12388
Synaptotagmin 1 (syt1) is an integral membrane protein localized on the synaptic vesicle that acts as the Ca(2+) sensor for neuronal exocytosis. Synaptotagmin 1 contains two C2 domains, C2A and C2B, which bind Ca(2+) ions, membranes, and SNAREs. Here, site-directed spin labeling (SDSL) was used to determine the position and dynamics of the region that links the two C2 domains in a water soluble construct encompassing the two C2 domains (syt1C2AB). An analysis of the EPR line shapes from this region indicates that the linker is flexible and unstructured when syt1 is in solution or bound to lipid bilayers. The nanosecond dynamics of the linker does not change, in the presence or absence of Ca(2+), suggesting that there is no Ca(2+)-dependent intramolecular association between the two domains. When syt1C2AB is membrane-bound, the position of the linker relative to the membrane interface was determined by measuring parameters for the collision of the spin-labeled syt1C2AB mutants with both soluble and membrane-bound Ni(II) chelates. These data indicate that the linker does not penetrate the membrane surface but lies approximately 7-10 A from the bilayer surface. In addition, the linker remains flexible when syt1C2AB binds to the SNARE complex, indicating that direct interactions between this linker and the SNAREs do not mediate association. These data suggest that the two C2 domains of syt1 interact independently on the membrane interface, or when bound to SNAREs.  相似文献   

7.
Synaptotagmin 1 (syt1) functions as a Ca2+-sensor for neuronal exocytosis. Here, site-directed spin labeling was used to examine the complex formed between a soluble fragment of syt1, which contains its two C2 domains, and the neuronal core soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Changes in electron paramagnetic resonance lineshape and accessibility for spin-labeled syt1 mutants indicate that in solution, the assembled core SNARE complex contacts syt1 in several regions. For the C2B domain, contact occurs in the polybasic face and sites opposite the Ca2+-binding loops. For the C2A domain, contact is seen with the SNARE complex in a region near loop 2. Double electron-electron resonance was used to estimate distances between the two C2 domains of syt1. These distances have broad distributions in solution, which do not significantly change when syt1 is fully associated with the core SNARE complex. The broad distance distributions indicate that syt1 is structurally heterogeneous when bound to the SNAREs and does not assume a well-defined structure. Simulated annealing using electron paramagnetic resonance-derived distance restraints produces a family of syt1 structures where the Ca2+-binding regions of each domain face in roughly opposite directions. The results suggest that when associated with the SNAREs, syt1 is configured to bind opposing bilayers, but that the syt1/SNARE complex samples multiple conformational states.  相似文献   

8.
The secretory vesicle protein synaptotagmin I (syt) plays a critical role in Ca2+-triggered exocytosis. Its cytoplasmic domain is composed of tandem C2 domains, C2A and C2B; each C2 domain binds Ca2+. Upon binding Ca2+, positively charged residues within the Ca2+-binding loops are thought to interact with negatively charged phospholipids in the target membrane to mediate docking of the cytoplasmic domain of syt onto lipid bilayers. The C2 domains of syt also interact with syntaxin and SNAP-25, two components of a conserved membrane fusion complex. Here, we have neutralized single positively charged residues at the membrane-binding interface of C2A (R233Q) and C2B (K366Q). Either of these mutations shifted the Ca2+ requirements for syt-liposome interactions from approximately 20 to approximately 40 microm Ca2+. Kinetic analysis revealed that the reduction in Ca2+-sensing activity was associated with a decrease in affinity for membranes. These mutations did not affect sytsyntaxin interactions but resulted in an approximately 50% loss in SNAP-25 binding activity, suggesting that these residues lie at an interface between membranes and SNAP-25. Expression of full-length versions of syt that harbored these mutations reduced the rate of exocytosis in PC12 cells. In both biochemical and functional assays, effects of the R233Q and K366Q mutations were not additive, indicating that mutations in one domain affect the activity of the adjacent domain. These findings indicate that the tandem C2 domains of syt cooperate with one another to trigger release via loop-mediated electrostatic interactions with effector molecules.  相似文献   

9.
Synaptotagmin-1 (syt), the putative Ca2+ sensor for exocytosis, is anchored to the membrane of secretory organelles. Its cytoplasmic domain is composed of two Ca2+-sensing modules, C2A and C2B. Syt binds phosphatidylinositol 4,5-bisphosphate (PIP2), a plasma membrane lipid with an essential role in exocytosis and endocytosis. We resolved two modes of PIP2 binding that are mediated by distinct surfaces on the C2B domain of syt. A novel Ca2+-independent mode of binding predisposes syt to penetrate PIP2-harboring target membranes in response to Ca2+ with submillisecond kinetics. Thus, PIP2 increases the speed of response of syt and steers its membrane-penetration activity toward the plasma membrane. We propose that syt-PIP2 interactions are involved in exocytosis by facilitating the close apposition of the vesicle and target membrane on rapid time scales in response to Ca2+.  相似文献   

10.
Synaptotagmins form a family of calcium-sensor proteins implicated in exocytosis, and these vesicular transmembrane proteins are endowed with two cytosolic calcium-binding C2 domains, C2A and C2B. Whereas the isoforms syt1 and syt2 have been studied in detail, less is known about syt9, the calcium sensor involved in endocrine secretion such as insulin release from large dense core vesicles in pancreatic beta-cells. Using cell-based assays to closely mimic physiological conditions, we observed SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor)-independent translocation of syt9C2AB to the plasma membrane at calcium levels corresponding to endocrine exocytosis, followed by internalization to endosomes. The use of point mutants and truncations revealed that initial translocation required only the C2A domain, whereas the C2B domain ensured partial pre-binding of syt9C2AB to the membrane and post-stimulatory localization to endosomes. In contrast with the known properties of neuronal and neuroendocrine syt1 or syt2, the C2B domain of syt9 did not undergo calcium-dependent membrane binding despite a high degree of structural homology as observed through molecular modelling. The present study demonstrates distinct intracellular properties of syt9 with different roles for each C2 domain in endocrine cells.  相似文献   

11.
Synaptotagmin (syt) 1 is localized to synaptic vesicles, binds Ca2+, and regulates neuronal exocytosis. Syt 1 harbors two Ca2+-binding motifs referred to as C2A and C2B. In this study we examine the function of the isolated C2 domains of Syt 1 using a reconstituted, SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor)-mediated, fusion assay. We report that inclusion of phosphatidylethanolamine into reconstituted SNARE vesicles enabled isolated C2B, but not C2A, to regulate Ca2+-triggered fusion. The isolated C2B domain had a 6-fold lower EC50 for Ca2+-activated fusion than the intact cytosolic domain of Syt 1 (C2AB). Phosphatidylethanolamine increased both the rate and efficiency of C2AB- and C2B-regulated fusion without affecting their abilities to bind membrane-embedded syntaxin-SNAP-25 (t-SNARE) complexes. At equimolar concentrations, the isolated C2A domain was an effective inhibitor of C2B-, but not C2AB-regulated fusion; hence, C2A has markedly different effects in the fusion assay depending on whether it is tethered to C2B. Finally, scanning alanine mutagenesis of C2AB revealed four distinct groups of mutations within the C2B domain that play roles in the regulation of SNARE-mediated fusion. Surprisingly, substitution of Arg-398 with alanine, which lies on the opposite end of C2B from the Ca2+/membrane-binding loops, decreases C2AB t-SNARE binding and Ca2+-triggered fusion in vitro without affecting Ca2+-triggered interactions with phosphatidylserine or vesicle aggregation. In addition, some mutations uncouple the clamping and stimulatory functions of syt 1, suggesting that these two activities are mediated by distinct structural determinants in C2B.  相似文献   

12.
The second messenger lipid PIP(3) (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3)-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP(3)-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3) lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3). The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP(3) target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP(3) on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3) headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3) headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3) headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP(3)-bound GRP1 PH domain on supported lipid bilayers.  相似文献   

13.
Landgraf KE  Malmberg NJ  Falke JJ 《Biochemistry》2008,47(32):8301-8316
Protein kinase C isoform alpha (PKCalpha) is a ubiquitous, conventional PKC enzyme that possesses a conserved C2 domain. Upon activation by cytoplasmic Ca (2+) ions, the C2 domain specifically binds to the plasma membrane inner leaflet where it recognizes the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP 2). The membrane penetration depth and docking angle of the membrane-associated C2 domain is not well understood. The present study employs EPR site-directed spin labeling and relaxation methods to generate a medium-resolution model of the PKCalpha C2 domain docked to a membrane of lipid composition similar to the plasma membrane inner leaflet. The approach measures EPR depth parameters for 10 function-retaining spin labels coupled to the C2 domain, and for spin labels coupled to depth calibration molecules. The resulting depth parameters, together with the known structure of the free C2 domain, provide a sufficient number of constraints to define two membrane docking geometries for C2 domain bound to physiological membranes lacking or containing PIP 2, respectively. In both the absence and presence of PIP 2, the two bound Ca (2+) ions of the C2 domain lie near the anionic phosphate plane in the headgroup region, consistent with the known ability of the Ca (2+) and membrane-binding loops (CMBLs) to bind the headgroup of the PS target lipid. In the absence of PIP 2, the polybasic lipid binding site on the beta3-beta4 hairpin is occupied with PS, but in the presence of PIP 2 this larger, higher affinity target lipid competitively displaces PS and causes the long axis of the domain to tilt 40 +/- 10 degrees toward the bilayer normal. The ability of the beta3-beta4 hairpin site to bind PS as well as PIP 2 extends the lifetime of the membrane-docked state and is predicted to enhance the kinase turnover number of PKCalpha during a single membrane docking event. In principle, PIP 2-induced tilting of the C2 domain could modulate the activity of membrane-docked PKCalpha as it diffuses between membrane regions with different local PS and PIP 2 concentrations. Finally, the results demonstrate that EPR relaxation methods are sufficiently sensitive to detect signaling-induced changes in the membrane docking geometries of peripheral membrane proteins.  相似文献   

14.
Psachoulia E  Sansom MS 《Biochemistry》2008,47(14):4211-4220
The mechanism of interaction of pleckstrin homology (PH) domains with phosphatidylinositol 4,5-bisphosphate (PIP 2)-containing lipid bilayers remains uncertain. While crystallographic studies have emphasized PH-inositol 1,4,5-trisphosphate (IP 3) interactions, biophysical studies indicate a degree of less specific protein-bilayer interactions. We have used molecular dynamics simulations to characterize the interactions of the PH domain from phospholipase C-delta1 with IP 3 and with PIP 2, the latter in lipid bilayers and in detergent micelles. Simulations of the PH domain in water reveal a reduction in protein flexibility when IP 3 is bound. Simulations of the PH domain bound to PIP 2 in lipid bilayers indicate a tightening of ligand-protein interactions relative to the PH-IP 3 complex, alongside formation of H-bonds between PH side chains and lipid (PC) headgroups, and a degree of penetration of hydrophobic side chains into the core of the bilayer. Comparison with simulations of the PH-bound domain to a PC bilayer in the absence of PIP 2 suggests that the presence of PIP 2 increases the extent of PH-membrane interactions. Thus, comparative molecular dynamics simulations reveal how a PI-binding domain undergoes changes in conformational dynamics on binding to a PIP 2-containing membrane and how interactions additional to those with the PI headgroup are formed.  相似文献   

15.
Hui E  Bai J  Chapman ER 《Biophysical journal》2006,91(5):1767-1777
Synaptotagmin I (syt), a transmembrane protein localized to secretory vesicles, functions as a Ca2+ sensor that facilitates SNARE-mediated membrane fusion. The cytoplasmic domain of syt harbors two C2-domains designated C2A and C2B. Upon binding Ca2+, C2A and C2B partially penetrate into membranes that contain anionic phospholipids. However, it is unknown whether these tandem C2-domains engage membranes at the same time, in a sequential manner, or in a mutually exclusive manner. We have used site-directed fluorescent probes to monitor the penetration of syt's C2-domains into phosphatidylserine-harboring lipid bilayers. We report that, in response to Ca2+, C2A and C2B copenetrate into these bilayers with diffusion-limited kinetics. Membrane penetration was more efficient when synthetic rather than natural phospholipids were used to prepare bilayers. The membrane penetration activity of the intact cytoplasmic domain of syt (C2A-C2B) exhibits significant resistance to changes in ionic strength. In contrast, the ability of isolated C2B to bind membranes in response to Ca2+ can be disrupted by subtle changes in ionic strength. Tethering C2B to a mutant version of C2A that does not bind Ca2+ or membranes significantly increases the stability of Ca2+.C2B.membrane complexes, confirming that C2A affects the membrane-binding properties of the adjacent C2B domain.  相似文献   

16.
R Bucki  P A Janmey  R Vegners  F Giraud  J C Sulpice 《Biochemistry》2001,40(51):15752-15761
During platelet activation, phosphatidylserine (PS) exposure on the extracellular face of the plasma membrane is associated with increased procoagulant activity. PS externalization is generally attributed to an increase in intracellular Ca(2+). Various phospholipid transporters, such as specific scramblases or proteins from the family of multidrug resistance proteins, and cofactors such as phosphatidylinositol 4,5-bisphosphate (PIP2) have been proposed to participate in this process. In this study, we used a membrane-permeant polycationic peptide (RhB-QRLFQVKGRR), derived from the PIP2-binding site of gelsolin (GS 160-169) and linked to rhodamine B, to investigate the role of PIP2 in PS externalization in whole platelets. The peptide penetrated rapidly into the platelets, specifically bound to PIP2, and induced PS exposure to a similar extent as thrombin or collagen, but independently of changes in intracellular Ca(2+) or phosphoinositide 3-kinase activity. A pretreatment of platelets with quercetin, an inhibitor of phosphoinositide metabolism, drastically decreased PS exposure induced by agonists or peptide. In large unilamellar vesicles (LUVs), the presence of PIP2 was strictly required for the induction of scrambling of NBD-labeled phospholipids (PC and PS) by the peptide. In inside-out vesicles from erythrocytes (IOVs), the peptide also induced redistribution of PC and PS. Our data suggest that, in intact platelets, PIP2 acts as a target of polycationic effectors, including Ca(2+), to promote PS exposure. The use of a membrane-permeant and fluorescent peptide which binds to PIP2 is a promising tool to investigate the role of PIP2 in various cellular processes.  相似文献   

17.
The membrane binding affinity of the pleckstrin homology (PH) domain of phospholipase C (PLC)-delta1 was investigated using a vesicle coprecipitation assay and the structure of the membrane-associated PH domain was probed using solid-state (13)C NMR spectroscopy. Twenty per cent phosphatidylserine (PS) in the membrane caused a moderate but significant reduction of the membrane binding affinity of the PH domain despite the predicted electrostatic attraction between the PH domain and the head groups of PS. Solid-state NMR spectra of the PH domain bound to the phosphatidylcholine (PC)/PS/phosphatidylinositol 4,5-bisphosphate (PIP(2)) (75 : 20 : 5) vesicle indicated loss of the interaction between the amphipathic alpha2-helix of the PH domain and the interface region of the membrane which was previously reported for the PH domain bound to PC/PIP(2) (95 : 5) vesicles. Characteristic local conformations in the vicinity of Ala88 and Ala112 induced by the hydrophobic interaction between the alpha2-helix and the membrane interface were lost in the structure of the PH domain at the surface of the PC/PS/PIP(2) vesicle, and consequently the structure becomes identical to the solution structure of the PH domain bound to d-myo-inositol 1,4,5-trisphosphate. These local structural changes reduce the membrane binding affinity of the PH domain. The effects of PS on the PH domain were reversed by NaCl and MgCl(2), suggesting that the effects are caused by electrostatic interaction between the protein and PS. These results generally suggest that the structure and function relationships among PLCs and other peripheral membrane proteins that have similar PH domains would be affected by the local lipid composition of membranes.  相似文献   

18.
Kimura T 《Biochemistry》2006,45(51):15601-15609
A human opioid neuropeptide, Met-enkephalin (M-Enk: Tyr1-Gly2-Gly3-Phe4-Met5), having no net charge binds to anionic phosphatidylserine (PS) in high preference to zwitterionic phosphatidylcholine (PC). The binding mechanism in the PS and PC bilayers was studied on the basis of the inter- and intramolecular interaction data obtained by natural-abundance 13C nuclear magnetic resonance (NMR) of the peptide. Prominent upfield changes of the 13C resonance were observed in the C-terminal residue upon binding to PS, whereas no such marked change was observed upon binding to PC. The upfield chemical shift changes with their characteristic carbon site dependence are ascribed to the electrostatic binding between the peptide C-terminal CO2- and the PS headgroup NH3+. Despite the net negative charge of the PS bilayer surface, M-Enk thus anchors the negatively charged C-terminus. In the N-terminal residue, on the other hand, marked downfield chemical shift changes are observed upon binding to both the PS and PC bilayers, the magnitude of the changes being much larger in the PS system. The downfield changes with their characteristic carbon site dependence are ascribed to the electrostatic binding between the peptide N-terminal NH3+ and the lipid headgroup negative charge(s) (CO2- or PO4- in PS, PO4- in PC). Perturbation on the signal half-widths due to membrane binding also indicates the preferential and deeper binding of M-Enk on the PS membrane surface than on the PC membrane surface. Local charge cancellation takes place efficiently between M-Enk termini and the PS headgroups and compensates for the strong electrostatic hydration of the ionic groups. Distribution of the charged (positive and negative) and uncharged sites in the headgroups along the bilayer normal is responsible for the marked difference between PS and PC headgroups in controlling the binding state of the zwitterionic M-Enk.  相似文献   

19.
Dok7 is a peripheral membrane protein that is associated with the MuSK receptor tyrosine kinase. Formation of the Dok7/MuSK/membrane complex is required for the activation of MuSK. This is a key step in the complex exchange of signals between neuron and muscle, which lead to neuromuscular junction formation, dysfunction of which is associated with congenital myasthenic syndromes. The Dok7 structure consists of a Pleckstrin Homology (PH) domain and a Phosphotyrosine Binding (PTB) domain. The mechanism of the Dok7 association with the membrane remains largely unknown. Using multi-scale molecular dynamics simulations we have explored the formation of the Dok7 PH/membrane complex. Our simulations indicate that the PH domain of Dok7 associates with membranes containing phosphatidylinositol phosphates (PIPs) via interactions of the β1/β2, β3/β4, and β5/β6 loops, which together form a positively charged surface on the PH domain and interact with the negatively charged headgroups of PIP molecules. The initial encounter of the Dok7 PH domain is followed by formation of additional interactions with the lipid bilayer, and especially with PIP molecules, which stabilizes the Dok7 PH/membrane complex. We have quantified the binding of the PH domain to the model bilayers by calculating a density landscape for protein/membrane interactions. Detailed analysis of the PH/PIP interactions reveal both a canonical and an atypical site to be occupied by the anionic lipid. PH domain binding leads to local clustering of PIP molecules in the bilayer. Association of the Dok7 PH domain with PIP lipids is therefore seen as a key step in localization of Dok7 to the membrane and formation of a complex with MuSK.  相似文献   

20.
The C2 domain is a ubiquitous Ca(2+)-binding motif that triggers the membrane docking of many key signaling proteins during intracellular Ca(2+) signals. Site-directed spin labeling was carried out on the C2 domain of cytosolic phospholipase A(2) in order to determine the depth of penetration and orientation of the domain at the membrane interface. Membrane depth parameters, Phi, were obtained by EPR spectroscopy for a series of selectively spin-labeled C2 domain cysteine mutants, and for spin-labeled lipids and spin-labeled bacteriorhodopsin cysteine mutants. Values of Phi were combined with several other constraints, including the solution NMR structure, to generate a model for the position of the C2 domain at the membrane interface. This modeling yielded an empirical expression for Phi, which for the first time defines its behavior from the bulk aqueous phase to the center of the lipid bilayer. In this model, the backbones of both the first and third Ca(2+)-binding loops are inserted approximately 10 A into the bilayer, with residues inserted as deep as 15 A. The backbone of the second Ca(2+)-binding loop is positioned near the lipid phosphate, and the two beta-sheets of the C2 domain are oriented so that the individual strands make angles of 30-45 degrees with respect to the bilayer surface. Upon membrane docking, spin labels in the Ca(2+)-binding loops exhibit decreases in local motion, suggesting either changes in tertiary contacts due to protein conformational changes and/or interactions with lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号