首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
ABC transporters harness the energy from ATP binding and hydrolysis to translocate substrates across the membrane. Binding of two ATP molecules at the nucleotide binding domains (NBDs) leads to the formation of an outward-facing state. The conformational changes required to reset the transporter to the inward-facing state are initiated by sequential hydrolysis of the bound nucleotides. In a homodimeric ABC exporter such as MsbA responsible for lipid A transport in Escherichia coli, sequential ATP hydrolysis implies the existence of an asymmetric conformation. Here we report the in vitro selection of a designed ankyrin repeat protein (DARPin) specifically binding to detergent-solubilized MsbA. Only one DARPin binds to the homodimeric transporter in the absence as well as in the presence of nucleotides, suggesting that it recognizes asymmetries in MsbA. DARPin binding increases the rate of ATP hydrolysis by a factor of two independent of the substrate-induced ATPase stimulation. Electron paramagnetic resonance (EPR) measurements are found to be in good agreement with the available crystal structures and reveal that DARPin binding does not affect the large nucleotide-driven conformational changes of MsbA. The binding epitope was mapped by cross-linking and EPR to the membrane-spanning part of the transmembrane domain (TMD). Using cross-linked DARPin-MsbA complexes, 8-azido-ATP was found to preferentially photolabel one chain of the homodimer, suggesting that the asymmetries captured by DARPin binding at the TMDs are propagated to the NBDs. This work demonstrates that in vitro selected binders are useful tools to study the mechanism of membrane proteins.  相似文献   

2.
ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.  相似文献   

3.
The 70-kDa peroxisomal membrane protein (PMP70) and the adrenoleukodystrophy protein (ALDP) are half ATP binding cassette (ABC) transporters in the peroxisome membrane. Mutations in the ALD gene encoding ALDP result in the X-linked neurodegenerative disorder adrenoleukodystrophy. Plausible models exist to show a role for ATP hydrolysis in peroxisomal ABC transporter functions. Here, we describe the first measurements of the rate of ATP binding and hydrolysis by purified nucleotide binding fold (NBF) fusion proteins of PMP70 and ALDP. Both proteins act as an ATP specific binding subunit releasing ADP after ATP hydrolysis; they did not exhibit GTPase activity. Mutations in conserved residues of the nucleotidases (PMP70: G478R, S572I; ALDP: G512S, S606L) altered ATPase activity. Furthermore, our results indicate that these mutations do not influence homodimerization or heterodimerization of ALDP or PMP70. The study provides evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter.  相似文献   

4.
Buchaklian AH  Klug CS 《Biochemistry》2006,45(41):12539-12546
ATP-binding cassette (ABC) transporters make up one of the largest superfamilies of proteins known and have been shown to transport substrates ranging from lipids and antibiotics to sugars and amino acids. The dysfunction of ABC transporters has been linked to human pathologies such as cystic fibrosis, hyperinsulinemia, and macular dystrophy. Several bacterial ABC transporters are also necessary for bacterial survival and transport of virulence factors in an infected host. MsbA is a 65 kDa protein that forms a functional homodimer consisting of two six-helix transmembrane domains and two approximately 250 amino acid nucleotide-binding domains (NBD). The NBDs contain several conserved regions such as the Walker A, LSGGQ, and H motif that bind directly to ATP and align it for hydrolysis. MsbA transports lipid A, its native substrate, across the inner membrane of Gram-negative bacteria. The loss or dysfunction of MsbA results in a toxic accumulation of lipid A inside the cell, leading to cell-membrane instability and cell death. Using site-directed spin labeling electron paramagnetic resonance spectroscopy, conserved motifs within the MsbA NBD have been evaluated for structure and dynamics upon substrate binding. It has been determined that the LSGGQ NBD consensus sequence is consistent with an alpha-helical conformation and that these residues maintain extensive tertiary contacts throughout hydrolysis. The dynamics of the LSGGQ and the H-motif region have been studied in the presence of ATP, ADP, and ATP plus vanadate to identify the residues that are directly affected by interactions with the substrate before, after, and during hydrolysis, respectively.  相似文献   

5.
ABC transporters play important roles in all types of organisms by participating in physiological and pathological processes. In order to modulate the function of ABC transporters, detailed knowledge regarding their structure and dynamics is necessary. Available structures of ABC proteins indicate three major conformations, a nucleotide-bound "bottom-closed" state with the two nucleotide binding domains (NBDs) tightly closed, and two nucleotide-free conformations, the "bottom-closed" and the "bottom-open", which differ in the extent of separation of the NBDs. However, it remains a question how the widely open conformation should be interpreted, and whether hydrolysis at one of the sites can drive conformational transitions while the NBDs remain in contact. To extend our knowledge, we have investigated the dynamic properties of the Sav1866 transporter using molecular dynamics (MD) simulations. We demonstrate that the replacement of one ATP by ADP alters the correlated motion patterns of the NBDs and the transmembrane domains (TMD). The results suggest that the hydrolysis of a single nucleotide could lead to extracellular closure, driving the transport cycle. Essential dynamics analysis of simulations suggests that single nucleotide hydrolysis can drive the system toward a "bottom-closed" apo conformation similar to that observed in the structure of the MsbA transporter. We also found significant structural instability of the "bottom-open" form of the transporters in simulations. Our results suggest that ATP hydrolysis at one of the sites promotes transport related conformational changes leading to the "bottom-closed" apo conformation, which could thus be physiologically more relevant for describing the structure of the apo state.  相似文献   

6.
Buchaklian AH  Klug CS 《Biochemistry》2005,44(14):5503-5509
MsbA is an ABC transporter that transports lipid A across the inner membrane of Gram-negative bacteria such as Escherichia coli. Without functional MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, several functionally important motifs common to ABC transporters are unresolved in the crystal structure. The Walker A domain, one of the ABC transporter consensus motifs that is directly involved in ATP binding, is located within a large unresolved region of the MsbA ATPase domain. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions. MsbA reconstituted into lipid membranes has been evaluated by EPR spectroscopy, and it has been determined that the Walker A domain forms an alpha-helical structure, which is consistent with the structure of this motif observed in other crystallized ABC transporters. In addition, the interaction of the Walker A residues with ATP before, during, and after hydrolysis was followed using SDSL EPR spectroscopy in order to identify the residues directly involved in substrate binding and hydrolysis.  相似文献   

7.
The Candida drug resistance protein Cdr1p (approximately 170 kDa) is a member of ATP binding cassette (ABC) superfamily of drug transporters, characterized by the presence of 2 nucleotide binding domains (NBD) and 12 transmembrane segments (TMS). NBDs of these transporters are the hub of ATP hydrolysis activity, and their sequence contains a conserved Walker A motif (GxxGxGKS/T). Mutations of the lysine residue within this motif abrogate the ability of NBDs to hydrolyze ATP. Interestingly, the sequence alignments of Cdr1p NBDs with other bacterial and eukaryotic transporters reveal that its N-terminal NBD contains an unusual Walker A sequence (GRPGAGCST), as the invariant lysine is replaced by a cysteine. In an attempt to understand the significance of this uncommon positioning of cysteine within the Walker A motif, we for the first time have purified and characterized the N-terminal NBD (encompassing first N-terminal 512 amino acids) of Cdr1p as well as its C193A mutant protein. The purified NBD-512 protein could exist as an independent functional general ribonucleoside triphosphatase with strong divalent cation dependence. It exhibited ATPase activity with an apparent K(m) in the 0.8-1.0 mM range and V(max) in the range of 147-160 nmol min(-)(1) (mg of protein)(-)(1). NBD-512-associated ATPase activity was also sensitive to inhibitors such as vanadate, azide, and NEM. The Mut-NBD-512 protein (C193A) showed a severe impairment in its ability to hydrolyze ATP (95%); however, no significant effect on ATP (TNP-ATP) binding was observed. Our results show that C193 is critical for N-terminal NBD-mediated ATP hydrolysis and represents a unique feature distinguishing the ATP-dependent functionality of the ABC transporters of fungi from those found in bacteria and other eukaryotes.  相似文献   

8.
Procko E  Gaudet R 《Biochemistry》2008,47(21):5699-5708
The transporter associated with antigen processing (TAP), an ABC transporter, pumps cytosolic peptides into the endoplasmic reticulum, where the peptides are loaded onto class I MHC molecules for presentation to the immune system. Transport is fueled by the binding of ATP to two cytosolic nucleotide-binding domains (NBDs) and ATP hydrolysis. We demonstrate biochemically that there are two electrostatic interactions across the interface between the two TAP NBDs and that these interactions are important for peptide transport. Notably, disrupting these interactions by mutagenesis does not greatly alter the ATP hydrolysis rate in an isolated NBD model system, suggesting that the interactions function at alternative stages in the transport cycle. The data support the general model for ABC transporters in which the NBDs form a tight, closed conformation during transport. Our results are discussed in relation to other ABC transporters that do or do not conserve potential interacting residues of opposite charges at the homologous positions.  相似文献   

9.
ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains (NBDs) that energize the transport reaction. Binding of ATP to the NBD monomer results in formation of a NBD dimer. Hydrolysis of the ATP drives the dissociation of the dimer. The thermodynamics of distinct steps in the ATPase cycle of GlcV, the NBD of the glucose ABC transporter of the extreme thermoacidophile Sulfolobus solfataricus, were studied by isothermal titration calorimetry using the wild-type protein and two mutants, which are arrested at different steps in the ATP hydrolytic cycle. The G144A mutant is unable to dimerize, while the E166A mutant is defective in dimer dissociation. The ATP, ADP, and AMP-PNP binding affinities, stoichiometries, and enthalpies of binding were determined at different temperatures. From these data, the thermodynamic parameters of nucleotide binding, NBD dimerization, and ATP hydrolysis were calculated. The data demonstrate that the ATP hydrolysis cycle of isolated NBDs consists of consecutive steps where only the final step of ADP release is energetically unfavorable.  相似文献   

10.
The spread of multidrug resistance (MDR) is a world health crisis that presents a significant challenge to the treatment of cancer and infection. MDR can be caused by a group of ABC (MDR-ABC) transporters that move hydrophobic drug molecules and lipids across the cell membrane. To gain insight into the conformational changes these transporters undergo when flipping hydrophobic substrates across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Vibrio cholera (VC-MsbA) to 3.8A. Structural comparison of VC-MsbA to MsbA from Escherichia coli reveals that the transporters share a structurally conserved core of transmembrane alpha-helices, but differ in the relative orientations of their nucleotide-binding domains (NBD). The transmembrane domain of VC-MsbA is captured in a closed conformation and the structure supports a "power stroke" model of transporter dynamics where opposing NBDs associate upon ATP binding. The separation of the alpha and beta domains of the NBD suggests the possibility that their association could make them competent to bind ATP and gives further insight into the structural basis for catalytic regulation.  相似文献   

11.
ABC transporters are a large and important family of membrane proteins involved in substrate transport across the membrane. The transported substrates are quite diverse, ranging from monatomic ions to large biomolecules. Consequently, some ABC transporters are involved in biomedically relevant situations, from genetic diseases to multidrug resistance. The most conserved domains in ABC transporters are the nucleotide binding domains (NBDs), which form a dimer responsible for the binding and hydrolysis of ATP, concomitantly with substrate translocation. To elucidate how ATP hydrolysis structurally affects the NBD dimer, and consequently the transporter, we performed a molecular dynamics study on the NBD dimer of the HlyB ABC exporter. We have observed a change in the contact surface between the monomers after hydrolysis, even though we have not seen dimer opening in any of the five 100 ns simulations. We have also identified specific regions that respond to ATP hydrolysis, in particular the X-loop motif of ABC exporters, which has been shown to be in contact with the coupling helices of the transmembrane domains (TMDs). We propose that this motif is an important part of the NBD-TMD communication in ABC exporters. Through nonequilibrium analysis, we have also identified gradual conformational changes within a short time scale after ATP hydrolysis.  相似文献   

12.
Powering the peptide pump: TAP crosstalk with energetic nucleotides   总被引:3,自引:0,他引:3  
ATP-binding cassette (ABC) transporters represent a large family of membrane-spanning proteins that have a shared structural organization and conserved nucleotide-binding domains (NBDs). They transport a large variety of solutes, and defects in these transporters are an important cause of human disease. TAP (tmacr;ransporter associated with āntigen pmacr;rocessing) is a heterodimeric ABC transporter that uses nucleotides to drive peptide transport from the cytoplasm into the endoplasmic reticulum lumen, where the peptides then bind major histocompatibility complex (MHC) class I molecules. TAP plays an essential role in the MHC class I antigen presentation pathway. Recent studies show that the two NBDs of TAP fulfil distinct functions in the catalytic cycle of this transporter. In this opinion article, a model of alternating ATP binding and hydrolysis is proposed, in which nucleotide interaction with TAP2 primarily controls substrate binding and release, whereas interaction with TAP1 controls structural rearrangements of the transmembrane pathway. Viral proteins that inhibit TAP function cause arrests at distinct points of this catalytic cycle.  相似文献   

13.
ATP-binding cassette (ABC) transporters belong to one of the largest protein superfamilies that expands from prokaryotes to man. Recent x-ray crystal structures of bacterial and mammalian ABC exporters suggest a common alternating access mechanism of substrate transport, which has also been biochemically substantiated. However, the current model does not yet explain the coupling between substrate binding and ATP hydrolysis that underlies ATP-dependent substrate transport. In our studies on the homodimeric multidrug/lipid A ABC exporter MsbA from Escherichia coli, we performed cysteine cross-linking, fluorescence energy transfer, and cysteine accessibility studies on two reporter positions, near the nucleotide-binding domains and in the membrane domains, for transporter embedded in a biological membrane. Our results suggest for the first time that substrate binding by MsbA stimulates the maximum rate of ATP hydrolysis by facilitating the dimerization of nucleotide-binding domains in a state, which is markedly distinct from the previously described nucleotide-free, inward-facing and nucleotide-bound, outward-facing conformations of ABC exporters and which binds ATP.  相似文献   

14.
Recent crystal structures of the multidrug ATP‐binding cassette (ABC) exporters Sav1866 from Staphylococcus aureus, MsbA from Escherichia coli, Vibrio cholera, and Salmonella typhimurium, and mouse ABCB1a suggest a common alternating access mechanism for export. However, the molecular framework underlying this mechanism is critically dependent on assumed conformational relationships between nonidentical crystal structures and therefore requires biochemical verification. The structures of homodimeric MsbA reveal a pair of glutamate residues (E208 and E208′) in the intracellular domains of its two half‐transporters, close to the nucleotide‐binding domains (NBDs), which are in close proximity of each other in the outward‐facing state but not in the inward‐facing state. Using intermolecular cysteine crosslinking between E208C and E208C′ in E. coli MsbA, we demonstrate that the NBDs dissociate in nucleotide‐free conditions and come close on ATP binding and ADP·vanadate trapping. Interestingly, ADP alone separates the half‐transporters like a nucleotide‐free state, presumably for the following catalytic cycle. Our data fill persistent gaps in current studies on the conformational dynamics of a variety of ABC exporters. Based on a single biochemical method, the findings describe a conformational cycle for a single ABC exporter at major checkpoints of the ATPase reaction under experimental conditions, where the exporter is transport active. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC (ATP binding cassette) transporter family, is a chloride channel whose activity is controlled by protein kinase-dependent phosphorylation. Opening and closing (gating) of the phosphorylated CFTR is coupled to ATP binding and hydrolysis at CFTR's two nucleotide binding domains (NBD1 and NBD2). Recent studies present evidence that the open channel conformation reflects a head-to-tail dimerization of CFTR's two NBDs as seen in the NBDs of other ABC transporters (Vergani et al., 2005). Whether these two ATP binding sites play an equivalent role in the dynamics of NBD dimerization, and thus in gating CFTR channels, remains unsettled. Based on the crystal structures of NBDs, sequence alignment, and homology modeling, we have identified two critical aromatic amino acids (W401 in NBD1 and Y1219 in NBD2) that coordinate the adenine ring of the bound ATP. Conversion of the W401 residue to glycine (W401G) has little effect on the sensitivity of the opening rate to [ATP], but the same mutation at the Y1219 residue dramatically lowers the apparent affinity for ATP by >50-fold, suggesting distinct roles of these two ATP binding sites in channel opening. The W401G mutation, however, shortens the open time constant. Energetic analysis of our data suggests that the free energy of ATP binding at NBD1, but not at NBD2, contributes significantly to the energetics of the open state. This kinetic and energetic asymmetry of CFTR's two NBDs suggests an asymmetric motion of the NBDs during channel gating. Opening of the channel is initiated by ATP binding at the NBD2 site, whereas separation of the NBD dimer at the NBD1 site constitutes the rate-limiting step in channel closing.  相似文献   

16.
The A-loop is a recently described conserved region in the NBDs of ABC transporters [Ambudkar, S.V., Kim, I.-W., Xia, D. and Sauna, Z.E. (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett. 580, 1049-1055; Kim, I.W., Peng, X.H., Sauna, Z.E., FitzGerald, P.C., Xia, D., Muller, M., Nandigama, K. and Ambudkar, S.V. (2006) The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette. Biochemistry 45, 7605-7616]. In mouse P-glycoprotein (Abcb1a), the aromatic residue of the A-loop in both NBDs is a tyrosine: Y397 in NBD1 and Y1040 in NBD2. Another tyrosine residue (618 in NBD1 and 1263 in NBD2) also appears to lie in proximity to the ATP molecule. We have mutated residues Y397, Y618, Y1040, and Y1263 to tryptophan and analyzed the effect of these substitutions on transport properties, ATP binding, and ATP hydrolysis by Abcb1a (mouse Mdr3). Y618W and Y1263W enzymes had catalytic characteristics similar to WT Abcb1a. On the other hand, Y397W and Y1040W showed impaired transport and greatly reduced ATPase activity, including a approximately 10-fold increase in Km for MgATP. Thus, Y397 and Y1040 play an important role in Abcb1a catalysis.  相似文献   

17.
Membrane transporters of the adenine nucleotide binding cassette (ABC) superfamily utilize two either identical or homologous nucleotide binding domains (NBDs). Although the hydrolysis of ATP by these domains is believed to drive transport of solute, it is unknown why two rather than a single NBD is required. In the well studied P-glycoprotein multidrug transporter, the two appear to be functionally equivalent, and a strongly supported model proposes that ATP hydrolysis occurs alternately at each NBD (Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett 377, 285-289). To assess how applicable this model may be to other ABC transporters, we have examined adenine nucleotide interactions with the multidrug resistance protein, MRP1, a member of a different ABC family that transports conjugated organic anions and in which sequences of the two NBDs are much less similar than in P-glycoprotein. Photoaffinity labeling experiments with 8-azido-ATP, which strongly supports transport revealed ATP binding exclusively at NBD1 and ADP trapping predominantly at NBD2. Despite this apparent asymmetry in the two domains, they are entirely interdependent as substitution of key lysine residues in the Walker A motif of either impaired both ATP binding and ADP trapping. Furthermore, the interaction of ADP at NBD2 appears to allosterically enhance the binding of ATP at NBD1. Glutathione, which supports drug transport by the protein, does not enhance ATP binding but stimulates the trapping of ADP. Thus MRP1 may employ a more complex mechanism of coupling ATP utilization to the export of agents from cells than P-glycoprotein.  相似文献   

18.
Kawai T  Caaveiro JM  Abe R  Katagiri T  Tsumoto K 《FEBS letters》2011,585(22):3533-3537
ATP-binding cassette (ABC) transporters couple hydrolysis of ATP with vectorial transport across the cell membrane. We have reconstituted ABC transporter MsbA in nanodiscs of various sizes and lipid compositions to test whether ATPase activity is modulated by the properties of the bilayer. ATP hydrolysis rates, Michaelis-Menten parameters, and dissociation constants of substrate analog ATP-γ-S demonstrated that physicochemical properties of the bilayer modulated binding and ATPase activity. This is remarkable when considering that the catalytic unit is located ~50? from the transmembrane region. Our results validated the use of nanodiscs as an effective tool to reconstitute MsbA in an active catalytic state, and highlighted the close relationship between otherwise distant transmembrane and ATPase modules.  相似文献   

19.
ABC (ATP-binding cassette) transporters are primary active membrane proteins that translocate solutes (allocrites) across lipid bilayers. The prototypical ABC transporter consists of four domains: two cytoplasmic NBDs (nucleotide-binding domains) and two TMDs (transmembrane domains). The NBDs, whose primary sequence is highly conserved throughout the superfamily, bind and hydrolyse ATP to power the transport cycle. The TMDs, whose primary sequence and protein fold can be quite disparate, form the translocation pathway across the membrane and generally (but not always) determine allocrite specificity. Structure determination of ABC proteins initially took advantage of the relative ease of expression and crystallization of the hydrophilic bacterial NBDs in isolation from the transporter complex, and revealed detailed information on the structural fold of these domains, the amino acids involved in the binding and hydrolysis of nucleotide, and the head-to-tail arrangement of the NBD-NBD dimer interface. More recently, several intact transporters have been crystallized and three types have, so far, been characterized: type I and II ABC importers, and ABC exporters. All three are present in prokaryotes, but only the ABC exporters appear to be present in eukaryotes. Their structural determination has provided insight into the mechanisms of energy and signal transduction between the NBDs and TMDs (i.e. between the ATP- and allocrite-binding sites) and, for some, the nature of the allocrite-binding site(s) within the TMDs. In this chapter, we focus primarily on the ABC exporters and describe the structural, biochemical and biophysical evidence for and against the controversial bellows-like mechanism proposed for allocrite efflux.  相似文献   

20.
The ATP binding cassette (ABC) family of transporters moves small molecules (lipids, sugars, peptides, drugs, nutrients) across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) is currently an outstanding question. Here we use sequence coevolution analyses together with biochemical characterization to investigate the role of a highly conserved region in intracellular loop 1 we define as the GRD motif in coordinating domain rearrangements in the heterodimeric peptide exporter from Thermus thermophilus, TmrAB. Mutations in the GRD motif alter ATPase activity as well as transport. Disulfide crosslinking, evolutionary trace, and evolutionary coupling analysis reveal that these effects are likely due to the destabilization of a network in which the GRD motif in TmrA bridges residues of the Q-loop, X-loop, and ABC motif in the NBDs to residues in the TmrAB peptide substrate binding site, thus providing an avenue for conformational coupling. We further find that disruption of this network in TmrA versus TmrB has different functional consequences, hinting at an intrinsic asymmetry in heterodimeric ABC transporters extending beyond that of the NBDs. These results support a mechanism in which the GRD motifs help coordinate a transition to an outward open conformation, and each half of the transporter likely plays a different role in the conformational cycle of TmrAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号