首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin action in skeletal muscle is enhanced by regular exercise. Whether insulin signaling in human skeletal muscle is affected by habitual exercise is not well understood. Phosphatidylinositol 3-kinase (PI3-kinase) activation is an important step in the insulin-signaling pathway and appears to regulate glucose metabolism via GLUT-4 translocation in skeletal muscle. To examine the effects of regular exercise on PI3-kinase activation, 2-h hyperinsulinemic (40 mU. m(-2). min(-1))-euglycemic (5.0 mM) clamps were performed on eight healthy exercise-trained [24 +/- 1 yr, 71.8 +/- 2.0 kg, maximal O(2) uptake (VO(2 max)) of 56.1 +/- 2.5 ml. kg(-1). min(-1)] and eight healthy sedentary men and women (24 +/- 1 yr, 64.7 +/- 4.4 kg, VO(2 max) of 44.4 +/- 2.7 ml. kg(-1). min(-1)). A [6, 6-(2)H]glucose tracer was used to measure hepatic glucose output. A muscle biopsy was obtained from the vastus lateralis muscle at basal and at 2 h of hyperinsulinemia to measure insulin receptor substrate-1(IRS-1)-associated PI3-kinase activation. Insulin concentrations during hyperinsulinemia were similar for both groups (293 +/- 22 and 311 +/- 22 pM for trained and sedentary, respectively). Insulin-mediated glucose disposal rates (GDR) were greater (P < 0.05) in the exercise-trained compared with the sedentary control group (9.22 +/- 0.95 vs. 6.36 +/- 0.57 mg. kg fat-free mass(-1). min(-1)). Insulin-stimulated PI3-kinase activation was also greater (P < 0.004) in the trained compared with the sedentary group (3.8 +/- 0.5- vs. 1.8 +/- 0.2-fold increase from basal). Endurance capacity (VO(2 max)) was positively correlated with PI3-kinase activation (r = 0.53, P < 0.04). There was no correlation between PI3-kinase and muscle morphology. However, increases in GDR were positively related to PI3-kinase activation (r = 0.60, P < 0.02). We conclude that regular exercise leads to greater insulin-stimulated IRS-1-associated PI3-kinase activation in human skeletal muscle, thus facilitating enhanced insulin-mediated glucose uptake.  相似文献   

2.
The most commonly detected polymorphism in human insulin receptor substrate-1 (IRS-1), a glycine to arginine change at codon 972 (G972R), is associated with an increased risk of Type 2 diabetes and insulin resistance. To determine the molecular mechanism by which this polymorphism may be linked to insulin resistance, we produced recombinant peptides comprising amino acid residues 925-1008 from IRS-1 that contain either a glycine or arginine at codon 972 and the two nearby tyrosine phosphorylation consensus sites (EY(941)MLM and DY(989)MTM), which are known binding sites for the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. The wild type peptide could be phosphorylated at these sites in vitro by purified insulin receptor. Introduction of the G972R polymorphism into the peptide reduced the amount of tyrosine phosphorylation by >60%. Pull-down experiments indicated that there was an association between the IRS-1-(925-1008) peptide and the insulin receptor that was markedly enhanced by the presence of the G972R polymorphism. The use of additional overlapping fragments localized this interaction to domains between residues 950-986 of IRS-1 and residues 966-1271 of the insulin receptor, containing the tyrosine kinase domain of the receptor. In addition, the IRS-1-(925-1008) G972R peptide acted as a competitive inhibitor of insulin receptor and insulin-like growth factor-1 receptor autophosphorylation. Taken together, these data indicate that the G972R naturally occurring polymorphism of IRS-1 not only reduces phosphorylation of the substrate but allows IRS-1 to act as an inhibitor of the insulin receptor kinase, producing global insulin resistance.  相似文献   

3.
Serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) has been implicated as a negative regulator of insulin signaling. Prior studies have indicated that this negative regulation by protein kinase C involves the mitogen-activated protein kinase and phosphorylation of serine 612 in IRS-1. In the present studies, the negative regulation by platelet-derived growth factor (PDGF) was compared with that induced by endothelin-1, an activator of protein kinase C. In contrast to endothelin-1, the inhibitory effects of PDGF did not require mitogen-activated protein kinase or the phosphorylation of serine 612. Instead, three other serines in the phosphorylation domain of IRS-1 (serines 632, 662, and 731) were required for the negative regulation by PDGF. In addition, the PDGF-activated serine/threonine kinase called Akt was found to inhibit insulin signaling. Moreover, this inhibition required the same IRS-1 serine residues as the inhibition by PDGF. Finally, the negative regulatory effects of PDGF and Akt were inhibited by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), one of the downstream targets of Akt. These studies implicate the phosphatidylinositol 3-kinase/Akt kinase cascade as an additional negative regulatory pathway for the insulin signaling cascade.  相似文献   

4.
Incubation of cells with insulin leads to a transient rise in Tyr phosphorylation of insulin receptor substrate (IRS) proteins, accompanied by elevation in their Ser(P)/Thr(P) content and their dissociation from the insulin receptor (IR). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, selectively prevented the increase in Ser(P)/Thr(P) content of IRS-1, its dissociation from IR, and the decrease in its Tyr(P) content following 60 min of insulin treatment. Four conserved phosphorylation sites within the phosphotyrosine binding/SAIN domains of IRS-1 and IRS-2 served as in vitro substrates for protein kinase B (PKB), a Ser/Thr kinase downstream of phosphatidylinositol 3-kinase. Furthermore, PKB and IRS-1 formed stable complexes in vivo, and overexpression of PKB enhanced Ser phosphorylation of IRS-1. Overexpression of PKB did not affect the acute Tyr phosphorylation of IRS-1; however, it significantly attenuated its rate of Tyr dephosphorylation following 60 min of treatment with insulin. Accordingly, overexpression of IRS-1(4A), lacking the four potential PKB phosphorylation sites, markedly enhanced the rate of Tyr dephosphorylation of IRS-1, while inclusion of vanadate reversed this effect. These results implicate a wortmannin-sensitive Ser/Thr kinase, different from PKB, as the kinase that phosphorylates IRS-1 and acts as the feedback control regulator that turns off insulin signals by inducting the dissociation of IRS proteins from IR. In contrast, insulin-stimulated PKB-mediated phosphorylation of Ser residues within the phosphotyrosine binding/SAIN domain of IRS-1 protects IRS-1 from the rapid action of protein-tyrosine phosphatases and enables it to maintain its Tyr-phosphorylated active conformation. These findings implicate PKB as a positive regulator of IRS-1 functions.  相似文献   

5.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) reduces its ability to act as an insulin receptor substrate and inhibits insulin receptor signal transduction. Here, we report that serine phosphorylation of IRS-1 induced by either okadaic acid (OA) or chronic insulin stimulation prevents interferon-alpha (IFN-alpha)-dependent IRS-1 tyrosine phosphorylation and IFN-alpha-dependent IRS-1/phosphatidylinositol 3'-kinase (PI3K) association. In addition, we demonstrate that serine phosphorylation of IRS-1 renders it a poorer substrate for JAK1 (Janus kinase-1). We found that treatment of U266 cells with OA induced serine phosphorylation of IRS-1 and completely blocked IFN-alpha-dependent tyrosine phosphorylation of IRS-1 and IFN-alpha-dependent IRS-1/PI3K association. Additionally, IRS-1 from OA-treated cells could not be phosphorylated in vitro by IFN-alpha-activated JAK1. Chronic treatment of U266 cells with insulin led to a 50% reduction in IFN-alpha-dependent tyrosine phosphorylation of IRS-1 and IRS-1/PI3K association. More importantly, serine-phosphorylated IRS-1-(511-722) could not be phosphorylated in vitro by IFN-alpha-activated JAK1. Taken together, these data indicate that serine phosphorylation of IRS-1 prevents its subsequent tyrosine phosphorylation by JAK1 and suggest that IRS-1 serine phosphorylation may play a counter-regulatory role in pathways outside the insulin signaling system.  相似文献   

6.
The phenotypic plasticity of mature vascular smooth muscle cells (VSMCs) facilitates angiogenesis and wound healing, but VSCM dedifferentiation also contributes to vascular pathologies such as intimal hyperplasia. Insulin/insulin-like growth factor I (IGF-I) is unique among growth factors in promoting VSMC differentiation via preferential activation of phosphatidylinositol 3-kinase (PI3K) and Akt. We have previously reported that rapamycin promotes VSMC differentiation by inhibiting the mammalian target of rapamycin (mTOR) target S6K1. Here, we show that rapamycin activates Akt and induces contractile protein expression in human VSMC in an insulin-like growth factor I-dependent manner, by relieving S6K1-dependent negative regulation of insulin receptor substrate-1 (IRS-1). In skeletal muscle and adipocytes, rapamycin relieves mTOR/S6K1-dependent inhibitory phosphorylation of IRS-1, thus preventing IRS-1 degradation and enhancing PI3K activation. We report that this mechanism is functional in VSMCs and crucial for rapamycin-induced differentiation. Rapamycin inhibits S6K1-dependent IRS-1 serine phosphorylation, increases IRS-1 protein levels, and promotes association of tyrosine-phosphorylated IRS-1 with PI3K. A rapamycin-resistant S6K1 mutant prevents rapamycin-induced Akt activation and VSMC differentiation. Notably, we find that rapamycin selectively activates only the Akt2 isoform and that Akt2, but not Akt1, is sufficient to induce contractile protein expression. Akt2 is required for rapamycin-induced VSMC differentiation, whereas Akt1 appears to oppose contractile protein expression. The anti-restenotic effect of rapamycin in patients may be attributable to this unique pattern of PI3K effector regulation wherein anti-differentiation signals from S6K1 are inhibited, but pro-differentiation Akt2 activity is promoted through an IRS-1 feedback signaling mechanism.  相似文献   

7.
In a screen for 3T3-F442A adipocyte proteins that bind SH2 domains, we isolated a cDNA encoding Fer, a nonreceptor protein-tyrosine kinase of the Fes/Fps family that contains a functional SH2 domain. A truncated splicing variant, iFer, was also cloned. iFer is devoid of both the tyrosine kinase domain and a functional SH2 domain but displays a unique 42-residue C terminus and retains the ability to form oligomers with Fer. Expression of both Fer and iFer proteins are strikingly increased upon differentiation of 3T3-L1 fibroblasts to adipocytes. Platelet-derived growth factor treatment of the cultured adipocytes caused rapid tyrosine phosphorylation of Fer and its recruitment to complexes containing platelet-derived growth factor receptor and the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase. Insulin treatment of 3T3-L1 adipocytes stimulated association of Fer with complexes containing tyrosine phosphorylated IRS-1 and PI 3-kinase but did not stimulate tyrosine phosphorylation of Fer. PI 3-kinase activity in anti-Fer immunoprecipitates was also acutely activated by insulin treatment of cultured adipocytes. These data demonstrate the presence of Fer tyrosine kinase in insulin signaling complexes, suggesting a role of Fer in insulin action.  相似文献   

8.
Protein kinase C-zeta (PKC-zeta) is a serine/threonine kinase downstream from phosphatidylinositol 3-kinase in insulin signaling pathways. However, specific substrates for PKC-zeta that participate in the biological actions of insulin have not been reported. In the present study, we identified insulin receptor substrate-1 (IRS-1) as a novel substrate for PKC-zeta. Under in vitro conditions, wild-type PKC-zeta (but not kinase-deficient mutant PKC-zeta) significantly phosphorylated IRS-1. This phosphorylation was reversed by treatment with the serine-specific phosphatase, protein phosphatase 2A. In addition, the overexpression of PKC-zeta in NIH-3T3(IR) cells caused significant phosphorylation of cotransfected IRS-1 as demonstrated by [(32)P]orthophosphate labeling experiments. In rat adipose cells, endogenous IRS-1 coimmunoprecipitated with endogenous PKC-zeta, and this association was increased 2-fold upon insulin stimulation. Furthermore, the overexpression of PKC-zeta in NIH-3T3(IR) cells significantly impaired insulin-stimulated tyrosine phosphorylation of cotransfected IRS-1. Importantly, this was accompanied by impaired IRS-1-associated phosphatidylinositol 3-kinase activity. Taken together, our results raise the possibility that IRS-1 is a novel physiological substrate for PKC-zeta. Because PKC-zeta is located downstream from IRS-1 and phosphatidylinositol 3-kinase in established insulin signaling pathways, PKC-zeta may participate in negative feedback pathways to IRS-1 similar to those described previously for Akt and GSK-3.  相似文献   

9.
The insulin and insulin-like growth factor-1 (IGF-1) receptors mediate signaling for energy uptake and growth through insulin receptor substrates (IRSs), which interact with these receptors as well as with downstream effectors. Oxygen is essential not only for ATP production through oxidative phosphorylation but also for many cellular processes, particularly those involved in energy homeostasis. The oxygen tension in vivo is significantly lower than that in the air and can vary widely depending on the tissue as well as on perfusion and oxygen consumption. How oxygen tension affects IRSs and their functions is poorly understood. Our findings indicate that transient hypoxia (1% oxygen) leads to caspase-mediated cleavage of IRS-1 without inducing cell death. The IRS-1 protein level rebounds rapidly upon return to normoxia. Protein tyrosine phosphatases (PTPs) appear to be important for the IRS-1 cleavage because tyrosine phosphorylation of the insulin receptor was decreased in hypoxia and IRS-1 cleavage could be blocked either with H(2)O(2) or with vanadate, each of which inhibits PTPs. Activity of Akt, a downstream effector of insulin and IGF-1 signaling that is known to suppress caspase activation, was suppressed in hypoxia. Overexpression of dominant-negative Akt led to IRS-1 cleavage even in normoxia, and overexpression of constitutively active Akt partially suppressed IRS-1 cleavage in hypoxia, suggesting that hypoxia-mediated suppression of Akt may induce caspase-mediated IRS-1 cleavage. In conclusion, our study elucidates a mechanism by which insulin and IGF-1 signaling can be matched to the oxygen level that is available to support growth and energy metabolism.  相似文献   

10.
CHO/IRF960/T962 cells express a mutant human insulin receptor in which Tyr960 and Ser962 in the juxtamembrane region of the receptor's beta-subunit are replaced by Phe and Thr, respectively. The mutant insulin receptor undergoes autophosphorylation normally in response to insulin; however, insulin fails to stimulate thymidine incorporation into DNA, glycogen synthesis, and tyrosyl phosphorylation of an endogenous substrate pp185 in these cells. Another putative substrate of the insulin receptor tyrosine kinase is phosphatidylinositol 3-kinase (Ptdlns 3-kinase). We have previously shown that Ptdlns 3-kinase activity in Chinese hamster ovary cells expressing the wild-type human insulin receptor (CHO/IR) increases in both antiphosphotyrosine [anti-Tyr(P)] immunoprecipitates and intact cells in response to insulin. In the present study a new technique (detection of the 85-kDa subunit of Ptdlns 3-kinase using [32P]phosphorylated polyoma virus middle T-antigen as probe) is used to monitor the Ptdlns 3-kinase protein. The 85-kDa subunit of Ptdlns 3-kinase is precipitated by anti-Tyr(P) antibodies from insulin-stimulated CHO/IR cells, but markedly less protein is precipitated from CHO/IRF960/T962 cells. The amount of Ptdlns 3-kinase activity in the immunoprecipitates was also reduced in the CHO/IRF960/T962 cells compared to CHO/IR cells. In intact CHO/IRF960/T962 cells, insulin failed to stimulate phosphate incorporation into one of the products of activated Ptdlns 3-kinase, phosphatidylinositol-3,4-bisphosphate [Ptdlns(3,4)P2], whereas it caused a 12-fold increase in CHO/IR cells. In contrast, phosphate incorporation into another product, phosphatidylinositol trisphosphate [PtdlnsP3], was only partially depressed in the CHO/IRF960/T962 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The insulin receptor initiates insulin action by phosphorylating multiple intracellular substrates. Previously, we have demonstrated that insulin receptor substrates (IRS)-1 and -2 can mediate insulin's action to promote translocation of GLUT4 glucose transporters to the cell surface in rat adipose cells. Although IRS-1, -2, and -4 are similar in overall structure, IRS-3 is approximately 50% shorter and differs with respect to sites of tyrosine phosphorylation. Nevertheless, as demonstrated in this study, both IRS-3 and IRS-4 can also stimulate translocation of GLUT4. Rat adipose cells were cotransfected with expression vectors for hemagglutinin (HA) epitope-tagged GLUT4 (GLUT4-HA) and human IRS-1, murine IRS-3, or human IRS-4. Overexpression of IRS-1 led to a 2-fold increase in cell surface GLUT4-HA in cells incubated in the absence of insulin; overexpression of either IRS-3 or IRS-4 elicited a larger increase in cell surface GLUT4-HA. Indeed, the effect of IRS-3 in the absence of insulin was approximately 40% greater than the effect of a maximally stimulating concentration of insulin in cells not overexpressing IRS proteins. Because phosphatidylinositol (PI) 3-kinase is essential for insulin-stimulated translocation of GLUT4, we also studied a mutant IRS-3 molecule (IRS-3-F4) in which Phe was substituted for Tyr in all four YXXM motifs (the phosphorylation sites predicted to bind to and activate PI 3-kinase). Interestingly, overexpression of IRS-3-F4 did not promote translocation of GLUT4-HA, but actually inhibited the ability of insulin to stimulate translocation of GLUT4-HA to the cell surface. Our data suggest that IRS-3 and IRS-4 are capable of mediating PI 3-kinase-dependent metabolic actions of insulin in adipose cells, and that IRS proteins play a physiological role in mediating translocation of GLUT4.  相似文献   

12.
Insulin receptor substrate-1 (IRS-1) was recently identified as a novel upstream substrate for the insulin-activated protein kinase C (PKC)-zeta. This interaction down-regulates insulin signal transduction under hyper-insulinemic conditions. To clarify the molecular mechanism of this feedback loop, we sought to identify the PKC-zeta phosphorylation sites of IRS-1 and to investigate their biological significance. Upon incubation of recombinant IRS-1 fragments with PKC-zeta, we identified Ser(318) of rat IRS-1 (Ser(323) in human IRS-1) as the major in vitro phosphorylation site (confirmed by mutation of Ser(318) to alanine). To monitor phosphorylation of Ser(318) in cellular extracts, we prepared a polyclonal phosphosite-specific antibody. The biological significance was studied in baby hamster kidney cells stably expressing the insulin receptor (BHK(IR)). Using the phospho-Ser(318)-specific antibody we observed that insulin stimulates phosphorylation of Ser(318) in IRS-1, which is mediated, at least partially, by PKC-zeta. Moreover, we found that the previously described insulin-stimulated, PKC-zeta-mediated inhibition of the interaction of IRS-1 with the insulin receptor and the reduced tyrosine phosphorylation of IRS-1 was abrogated by mutation of IRS-1 Ser(318) to alanine. These results, generated in BHK(IR) cells, suggest that phosphorylation of Ser(318) by PKC-zeta might contribute to the inhibitory effect of prolonged hyperinsulinemia on IRS-1 function.  相似文献   

13.
Grb10 has been proposed to inhibit or activate insulin signaling, depending on cellular context. We have investigated the mechanism by which full-length hGrb10gamma inhibits signaling through the insulin receptor substrate (IRS) proteins. Overexpression of hGrb10gamma in CHO/IR cells and in differentiated adipocytes significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2. Inhibition occurred rapidly and was sustained for 60 min during insulin stimulation. In agreement with inhibited signaling through the IRS/PI 3-kinase pathway, we found hGrb10gamma to both delay and reduce phosphorylation of Akt at Thr(308) and Ser(473) in response to insulin stimulation. Decreased phosphorylation of IRS-1/2 may arise from impaired catalytic activity of the receptor, since hGrb10gamma directly associates with the IR kinase regulatory loop. However, yeast tri-hybrid studies indicated that full-length Grb10 blocks association between IRS proteins and IR, and that this requires the SH2 domain of Grb10. In cells, hGrb10gamma inhibited insulin-stimulated IRS-1 tyrosine phosphorylation in a dose-dependent manner, but did not affect IR catalytic activity toward Tyr(972) in the juxtamembrane region and Tyr(1158/1162/1163) in the regulatory domain. We conclude that binding of hGrb10gamma to IR decreases signaling through the IRS/PI 3-kinase/AKT pathway by physically blocking IRS access to IR.  相似文献   

14.
Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.  相似文献   

15.
Mice made insulin receptor substrate 1 (IRS-1) deficient by targeted gene knockout exhibit growth retardation and abnormal glucose metabolism due to resistance to the actions of insulin-like growth factor 1 (IGF-1) and insulin (E. Araki et al., Nature 372:186-190, 1994; H. Tamemoto et al., Nature 372:182-186, 1994). Embryonic fibroblasts and 3T3 cell lines derived from IRS-1-deficient embryos exhibit no IGF-1-stimulated IRS-1 phosphorylation or IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity but exhibit normal phosphorylation of IRS-2 and Shc and normal IRS-2-associated PI 3-kinase activity. IRS-1 deficiency results in a 70 to 80% reduction in IGF-1-stimulated cell growth and parallel decreases in IGF-1-stimulated S-phase entry, PI 3-kinase activity, and induction of the immediate-early genes c-fos and egr-1 but unaltered activation of the mitogen-activated protein kinases ERK 1 and ERK 2. Expression of IRS-1 in IRS-1-deficient cells by retroviral gene transduction restores IGF-1-stimulated mitogenesis, PI 3-kinase activation, and c-fos and egr-1 induction in proportion to the level of reconstitution. Increasing the level of IRS-2 in these cells by using a retrovirus reconstitutes IGF-1 activation of PI 3-kinase and immediate-early gene expression to the same degree as expression of IRS-1; however, IRS-2 overexpression has only a minor effect on IGF-1 stimulation of cell cycle progression. These results indicate that IRS-1 is not necessary for activation of ERK 1 and ERK 2 and that activation of ERK 1 and ERK 2 is not sufficient for IGF-1-stimulated activation of c-fos and egr-1. These data also provide evidence that IRS-1 and IRS-2 are not functionally interchangeable signaling intermediates for stimulation of mitogenesis despite their highly conserved structure and many common functions such as activating PI 3-kinase and early gene expression.  相似文献   

16.
The signaling pathway by which insulin stimulates insulin secretion and increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in isolated mouse pancreatic beta-cells and clonal beta-cells was investigated. Application of insulin to single beta-cells resulted in increases in [Ca(2+)](i) that were of lower magnitude, slower onset, and longer lifetime than that observed with stimulation with tolbutamide. Furthermore, the increases in [Ca(2+)](i) originated from interior regions of the cell rather than from the plasma membrane as with depolarizing stimuli. The insulin-induced [Ca(2+)](i) changes and insulin secretion at single beta-cells were abolished by treatment with 100 nm wortmannin or 1 micrometer thapsigargin; however, they were unaffected by 10 micrometer U73122, 20 micrometer nifedipine, or removal of Ca(2+) from the medium. Insulin-stimulated insulin secretion was also abolished by treatment with 2 micrometer bisindolylmaleimide I, but [Ca(2+)](i) changes were unaffected. In an insulin receptor substrate-1 gene disrupted beta-cell tumor line, insulin did not evoke either [Ca(2+)](i) changes or insulin secretion. The data suggest that autocrine-activated increases in [Ca(2+)](i) are due to release of intracellular Ca(2+) stores, especially the endoplasmic reticulum, mediated by insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Autocrine activation of insulin secretion is mediated by the increase in [Ca(2+)](i) and activation of protein kinase C.  相似文献   

17.
Class IA phosphatidylinositol 3-kinase (PI 3-kinase), which is composed of a 110 kDa catalytic subunit and a regulatory subunit, plays a key role in most insulin dependent cellular responses. To date, five mammalian regulatory subunit isoforms have been identified, including two 85 kDa proteins (p85α and p85β), two 55 kDa proteins (p55γ and p55α), and one 50 kDa protein (p50α). In the present study, we overexpressed these recombinant proteins, tagged with green fluorescent proteins (GFP), in CHO-IR cells and investigated intracellular localizations in both the presence and the absence of insulin stimulation. Interestingly, in response to insulin, only p85α and p85β redistributed to isolated foci in the cells, while both were present throughout the cytoplasm in quiescent cells. In contrast, p55s accumulated in the perinuclear region irrespective of insulin stimulation, while p50α behaved similarly to control GFP. Immunofluorescent antibodies against endogenous IRS-1 revealed IRS-1 to be co-localized in the p85 foci in response to insulin. As both insulin receptors and p110α catalytic subunits were absent from these foci on immunofluorescence study, only p85 and IRS-1 were suggested to form a sequestration complex in response to insulin. To determine the domain responsible for IRS-1 complex formation, we prepared and overexpressed the SH3 domain deletion mutant of p85α in CHO-IR cells. This mutant failed to form foci, suggesting the SH3 domain of regulatory subunits to be responsible for formation of the p85-IRS-1 sequestration complex. In conclusion, our study revealed the SH3 domain of PI 3-kinase to play a critical role in intracellular localizations, including formation of foci with IRS-1 in response to insulin.  相似文献   

18.
19.
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim(-/-) cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.  相似文献   

20.
To analyze the mechanism of action of the insulinomimetic agents H2O2, vanadate, and pervanadate (H2O2 and vanadate), CHO cells or CHO cells that overexpress wild-type or mutant insulin receptor and/or the insulin receptor substrate (IRS-1) were used. H2O2 or vanadate treatment alone had little or no effect on tyrosine phosphorylation of cellular proteins; however, pevanadate treatment dramatically enhanced tyrosine phosphorylation of a number of proteins including the insulin receptor and IRS-1. However, the insulin receptor and IRS-1 coimmunoprecipitate from insulin-treated but not from pervanadate-treated cells. Pervanadate-induced tyrosine phosphorylation of the insulin receptor led to an increase in insulin receptor tyrosine kinase activity toward IRS-1 in vivo and IRS-1 peptides in vitro equal to that induced by insulin treatment. Pervanadate-enhanced phosphorylation of IRS-1 led to a fifteenfold increase in IRS-1–associated phosphatidylinositol (Ptdlns) 3-kinase activity. However, insulin receptor–associated Ptdlns 3-kinase activity from pervanadate-treated cells was not detectable, while insulin receptor–associated Ptdlns 3-kinase activity from insulin-treated cells was 20% of the IRS-1-associated activity. Thus, pervanadate but not H2O2 or vanadate alone under these conditions mimics many of insulin actions, but pervanadate treatment does not induce insulin receptor/IRS-1 association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号