首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biological effectiveness of antiviral acyclic nucleoside phosphonate adefo vir, 9-[2-(phosphonomethoxy)ethy]ade nine (PMEA) and its more lipophilic (bis)pivaloyloxymethyl ester prodrug adefovir dipivoxil (bis-POM-PMEA) were compared under in vitro conditions in mammalian cell systems. Proliferation of murine splenocytes was inhibited in a concentration-dependent manner, the bis-POM-PMEA being more effective than PMEA. In contrast to PMEA, bis-POM-PMEA inhibited production of nitric oxide (NO) in macrophages activated with interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Viability of both splenocytes and macrophages remained uninfluenced by PMEA, whereas pronounced cytocidal effects were exhibited by bis-POM-PMEA. The IC(50)s reached the values of 15 microM and 30 microM in cultures of macrophages and splenocytes, respectively (assayed at the interval of 24 hrs). The effects could partly be mimicked by formaldehyde, a decomposition product of the pivoxil moiety of bis-POM-PMEA. The other possible product, pivalic acid, was ineffective in this respect. The present data are consistent with the view that pivoxil prodrug of PMEA, bis-POM-PMEA possesses enhanced but also broader spectrum of biological effects than the parent compound.  相似文献   

2.
The 9-(2-phosphonomethoxyethyl)adenine (PMEA) and its more bioavailable bis(pivaloyloxymethyl) ester, (bis-POM-PMEA), applied s.c. at doses of 5-50 mg/kg, profoundly suppress symptoms of rat adjuvant arthritis, such as paw swelling, sple-nomegaly, fibroadhesive perisplenitis and systemic NO levels. The 9-(2-phosphonomethoxypropyl)adenine, PMPA and bis-POC-PMPA are ineffective. The antiarthritic effect does not depend on the influence of the drugs on macrophage NO production.  相似文献   

3.
The decomposition kinetics of bis-POC PMEA and bis-POC PMPA followed pseudo-first order kinetics with the corresponding mono-POC ester detected as the only observable degradation product for all the pH values studied. The rates of hydrolysis of bis-POC PMEA over the pH range studied was described by [formula: see text] The 18O incorporation studies revealed that hydrolysis of bis-POC PMEA at pH 7.0 primarily proceeds via P-O cleavage with an additional minor pathway involving C-O bond cleavage. Hydrolysis of bis-POC PMPA was found to be about 2 fold slower than bis-POC PMEA at pH values above 6.0.  相似文献   

4.
Abstract

The bis-pivaloyloxymethyl(POM)- and diphenyl-ester prodrugs of the broad spectrum antiviral agent 9-(2-phosphonylmethoxyethyl)adenine (PMEA) have been evaluated in vivo for antiviral efficacy upon oral administration in severe combined immune deficiency (SCID) mice infected with Moloney murine sarcoma virus (MSV). Oral bis (POM)-PMEA proved highly efficient in delaying MSV-induced tumor formation and associated death, its effect being equal to that of subcutaneous PMEA at an equimolar dose. Compared to bis(POM)-PMEA, oral diphenyl-PMEA had lower antiviral efficacy, whereas PMEA as such was poorly effective when administered orally. Our studies indicate that bis(POM)-PMEA must have a favorable oral bioavailability and justify its clinical investigation as an oral prodrug of PMEA in the treatment of HIV infections.  相似文献   

5.
Abstract

The 9-(2-phosphonomethoxyethyl)adenine (PMEA) and its more bioavailable bis(pivaloyloxymethyl) ester, (bis-POM-PMEA), applied s.c. at doses of 5–50 mg/kg, profoundly suppress symptoms of rat adjuvant arthritis, such as paw swelling, sple-nomegaly, fibroadhesive perisplenitis and systemic NO levels. The 9-(2-phosphono-methoxypropyl)adenine, PMPA and bis-POC-PMPA are ineffective. The antiarthritic effect does not depend on the influence of the drugs on macrophage NO production.  相似文献   

6.
PMPA, an acyclic nucleoside phosphonate analog, is a potent inhibitor of HIV. In the cells, PMPA is efficiently phosphorylated by intracellular kinases to produce PMPApp, the pharmacologically active metabolite. Despite its demonstrated antiviral potency, PMPA has limited cell permeability presumably resulting from the presence of two negative charges on the phosphonyl group. To enhance intracellular concentrations of PMPA, we developed a prodrug, selectively metabolized inside cells. GS-7340 (9-[(R)-2-[[[[(S)-1-(isopropoxycarbonyl)ethyl] amino] phenoxy-phosphinyl]-methoxy] propyl] adenine) is a prodrug which is orally bioavailable in dogs as the intact prodrug and has demonstrated anti-HIV activity in cell culture of over 1000-fold greater than that of PMPA. The metabolism of PMPA in peripheral blood mononuclear cells (PBMC), red blood cells (RBC) and plasma was examined following exposure of whole blood to PMPA or GS-7340 at concentrations similar to ones observed systemically following oral administration in dogs. Following 1 hour incubation with whole blood, GS-7340 was stable in plasma, produced high levels of PMPA and its phosphorylated metabolites in PBMC but not in RBC. No intact prodrug was present in PBMC. The only other species present in PBMC was monoalaninyl PMPA. The levels of PMPA and the phosphorylated metabolites were over 20 times greater than those after incubation with PMPA. The dog and human blood data were similar. The intracellular levels of PMPA and PMPApp were roughly proportional to GS-7340 over a 10-fold concentration range indicating a lack of saturability of uptake and phosphorylation. Since PMPApp is the species responsible for antiviral activity of PMPA, the high intracellular levels of PMPApp should be an important indicator of greater clinical efficacy of GS-7340.  相似文献   

7.
Adenylate kinases are involved in the activation of antiviral drugs such as the acyclic phosphonates analogs PMEA and (R)PMPA. We examine the in vitro phosphorylation of PMEA and PMPA bearing a borano- or a H- group on the phosphorus atom. The alpha-borano or alpha-H on PMEA and PMPA were detrimental to the activity of recombinant human AMP kinases 1 and 2. Docking PMEA to the active site of AMP kinase 1 indicated that the borano group may prevent two conserved critical Arg interactions with the alpha-phosphate, resulting in substrate bad positioning.  相似文献   

8.
Gossypol 1, gossypolone 2, and a series of bis 3 and half Schiff's bases 4 of gossypol were synthesised and tested for anti-proliferative and anti-oxidant activity. (-)-Gossypol (-)-1 was the most potent inhibitor of the proliferation of the HPV-16 keratinocyte cell line (using an MTT viability assay) with a GI50 of 4.8 microM. The bis Schiff's base of (-)-gossypol with L-tyrosine ethyl ester (-)-3b was the most potent inhibitor of iron/ascorbate dependent lipid peroxidation (using the thiobarbituric acid test), with an IC50 of 11.7 microM, with (-)-gossypol being the next most potent of the series, with an IC50 of 13.1 microM. The results from these initial assays suggest that gossypol, as either a racemic mixture rac-1, or the individual atropisomers (-)-1 or (+)-1, has potential for the treatment of psoriasis.  相似文献   

9.
A number of new triclosan-conjugated analogs bearing biodegradable ester linkage have been synthesized, characterized and evaluated for their antimalarial and antibacterial activities. Many of these compounds exhibit good inhibition against Plasmodium falciparum and Escherichia coli. Among them tertiary amine containing triclosan-conjugated prodrug (5) inhibited both P. falciparum (IC(50); 0.62microM) and E. coli (IC(50); 0.26microM) at lower concentrations as compared to triclosan. Owing to the presence of a cleavable ester moiety, these new prodrugs are hydrolyzed under physiological conditions and parent molecule, triclosan, is released. Further, introduction of tertiary/quaternary functionality increases their cellular uptake. These properties impart them with higher potency to their antimalarial as well as antibacterial activities. The best compound among them 5 shows close to four-fold enhanced activities against P. falciparum and E. coli cultures as compared to triclosan.  相似文献   

10.
PMPA, an acyclic nucleoside phosphonate analog, is a potent inhibitor of HIV. In the cells, PMPA is efficiently phosphorylated by intracellular kinases to produce PMPApp, the pharmacologically active metabolite. Despite its demonstrated antiviral potency, PMPA has limited cell permeability presumably resulting from the presence of two negative charges on the phosphonyl group. To enhance intracellular concentrations of PMPA, we developed a prodrug, selectively metabolized inside cells. GS-7340 (9-[R)-2-[[[[S)-1-(isopropoxycarbonyl)ethyl] amino] phenoxy-phosphinyl]-methoxy] propyl] adenine) is a prodrug which is orally bioavailable in dogs as the intact prodrug and has demonstrated anti-HIV activity in cell culture of over 1000-fold greater than that of PMPA. The metabolism of PMPA in peripheral blood mononuclear cells (PBMC), red blood cells (RBC) and plasma was examined following exposure of whole blood to PMPA or GS-7340 at concentrations similar to ones observed systemically following oral administration in dogs. Following 1 hour incubation with whole blood, GS-7340 was stable in plasma, produced high levels of PMPA and its phosphorylated metabolites in PBMC but not in RBC. No intact prodrug was present in PBMC. The only other species present in PBMC was monoalaninyl PMPA. The levels of PMPA and the phosphorylated metabolites were over 20 times greater than those after incubation with PMPA. The dog and human blood data were similar. The intracellular levels of PMPA and PMPApp were roughly proportional to GS-7340 over a 10-fold concentration range indicating a lack of saturability of uptake and phosphorylation. Since PMPApp is the species responsible for antiviral activity of PMPA, the high intracellular levels of PMPApp should be an important indicator of greater clinical efficacy of GS-7340.  相似文献   

11.
A series of novel bis(L-amino acid) ester prodrugs of 9-[2-(phosphonomethoxy)ethyl] adenine (PMEA) was synthesized and their anti-HBV activity was evaluated in HepG 2 2.2.15 cells. Compounds 11, 12, 21, 22, 26, and 27 demonstrated more potent anti-HBV activity and higher selective index (SI) than adefovir dipivoxil, which was used as a positive control. Compound 11, which was found to be the most potent one, was five times more potent than adefovir dipivoxil with EC50 value of 0.095 microM and CC50 value of 6636 microM. The SI value (>69,000) of compound 11 was 60 times and 24 times higher than those of adefovir dipivoxil and lamivudine, respectively. In vitro stability studies showed that compound 11 was relatively more stable than adefovir dipivoxil with t1/2 of 270 min. These findings suggested that compound 11 could be considered as a promising candidate for further in vivo studies.  相似文献   

12.
Design, synthesis and biological evaluation of a series of 5-chloropyridine ester-derived severe acute respiratory syndrome-coronavirus chymotrypsin-like protease inhibitors is described. Position of the carboxylate functionality is critical to potency. Inhibitor 10 with a 5-chloropyridinyl ester at position 4 of the indole ring is the most potent inhibitor with a SARS-CoV 3CLpro IC(50) value of 30 nM and an antiviral EC(50) value of 6.9 microM. Molecular docking studies have provided possible binding modes of these inhibitors.  相似文献   

13.
n-Alkyl esters (ethyl, octyl, dodecyl, and cetyl) of gallic acid were evaluated as enzyme inhibitors of recombinant rat squalene epoxidase (SE), a rate-limiting enzyme of cholesterol biogenesis. Dodecyl (6) (IC(50) = 0.061 microM) showed the most potent inhibition, which was far more potent than those of previously reported naturally occurring gallocatechins. Octyl gallate (5) (IC(50) = 0.83 microM) and cetyl gallate (7) (IC(50) = 0.59 microM) also showed good inhibition, while gallic acid (IC(50) = 73 microM) itself was not so active. In addition, chemically synthesized galloyl ester of cholesterol (9) (IC(50) = 3.9 microM), farnesol derivative (10) (IC(50) = 0.57 microM), and dodecyl galloyl amide (8) (IC(50) = 3.0 microM) were also potent inhibitors of SE. Inhibition kinetics revealed that dodecyl gallate inhibited SE in competitive (K(I) = 0.033 microM) and no-time-dependent manner. The potent inhibition of the flavin monooxygenase would be caused by specific binding to the enzyme, and by scavenging reactive oxygen species required for the epoxidation reaction.  相似文献   

14.
Acyclovir is an acyclic guanine analog with a considerable activity against herpes simplex viruses. We studied the antiherpetic activity of acyclovir in macrophages and fibroblast cell lines. Utilising a plaque reduction assay we found that acyclovir potently inhibited the HSV-1 replication in macrophages (EC50) = 0.0025 microM) compared to Vero (EC50 = 8.5 microM) and MRC-5 (EC50 = 3.3 microM) cells. The cytotoxicity of acyclovir was not detected at concentrations < or = 20 microM, thus the selective index in macrophages was >8000. This marked difference in antiherpetic activity between macrophages and fibroblasts was not observed with Foscarnet and PMEA. We suggest that this potent antiviral effect of acyclovir is mainly due to a proficient phosphorylation of the drug and/or a favourable dGTP/acyclovir triphosphate ratio in macrophage cells.  相似文献   

15.
3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 5 (MGS0039) is a highly selective and potent group II metabotropic glutamate receptor (mGluR) antagonist (antagonist activities for mGluR2; IC50=20.0 nM, mGluR3; IC50=24.0 nM) and is detected in both plasma (492 ng/mL) and brain (13.2 ng/g) at oral administration of 10 ng/mL [J. Med. Chem.2004, 47, 4750], but the oral bioavailability of 5 was 10.9%. In order to improve the oral bioavailability of 5, prodrugs of 5 were discovered by esterification of carboxyl group on C6-position of bicyclo[3.1.0]hexane ring. Among these compounds, 6-alkyl esters exhibited approximately 10-fold higher concentrations of 5 in the plasma and brain of rats after oral administration (e.g., ethyl ester of 5; plasma, Cmax=20.7+/-1.3 microM) compared to oral administration of 5 (plasma, Cmax=2.46+/-0.62 microM). 3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 6-heptyl ester (7ao), a prodrug of MGS0039, showed antidepressant-like effects in rat forced swimming test and mouse tail suspension test following oral administration. Moreover, following oral administration of 7ao in mice, high concentrations of MGS0039 were detected in both the brain and plasma, while 7ao was barely detected. In this paper, we report the synthesis, in vitro metabolic stabilities, and pharmacokinetic profiles of the prodrugs of 5, and the antidepressant-like effects of 7ao.  相似文献   

16.
N-(Dicyclohexyl)acetyl-piperidine-4-benzylidene-4-carboxylic acid (1), although a very potent in vitro 5alpha-steroid reductase (5alphaR) type 2 inhibitor, showed only marginal in vivo activity in rats. Since this could be due to hindered cellular uptake of the carboxylic acid, acid (1) and its corresponding methyl ester (1a) were compared with respect to their permeation properties. In the parallel artificial membrane permeation assay (PAMPA), 1a showed a higher %flux of 55 versus 6 for 1. Considering the high potency of 1 and better permeation of 1a, the use of 1a as a prodrug for 1 was explored using the human prostate carcinoma cell line DU145. Esterase activity, a prerequisite for this prodrug concept was detected employing 4-nitrophenyl acetate (4-NPA) as a substrate. After incubation of DU145 cells with 1 and 1a, respectively, permeated 1a and its hydrolysis to 1 were unequivocally observed by MALDI-TOF MS analyses, whereas 1 could not be detected inside the cells above the detection limit. Regarding biological activity, 1a showed a stronger inhibition of 5alphaR in intact DU145 cells than 1 (IC50 values, 4 microM and > 10 microM for 1a and 1, respectively). These results suggest that the in vivo activity of 1 might be increased by the use of its methyl ester prodrug 1a.  相似文献   

17.
A number of acyclic nucleoside phosphonate analogues, including 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and its 2,6-diaminopurine derivative PMEDAP, (R,S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine [(R,S)-FPMPA] and its 2,6-diaminopurine derivative (R,S)-FPMPDAP were evaluated for their inhibitory effects on HIV-1 replication in two natural human cell systems, i.e. peripheral blood lymphocytes (PBL) and freshly prepared monocyte/macrophages (M/M). All compounds were potent inhibitors of HIV-1 replication in PBL [50% effective concentration (EC50): 0.94-3.9 microM] and M/M (EC50: 0.022-0.95 microM). In particular, (R,S)-FPMPA and (R,S)-FPMPDAP showed a greater antiviral selectivity than PMEA and PMEDAP due to the virtual lack of toxicity of the former compounds in these cell systems. Also, the antiviral selectivity of the acyclic nucleoside phosphonate analogues was much higher in M/M than in the human T-cell lines MT-4, ATH8 and CEM.  相似文献   

18.
The device of new hepatotrophic prodrugs of the antiviral nucleoside 9-(2-phosphonylmethoxyethyl)adenine (PMEA) with specificity for the asialoglycoprotein receptor on parenchymal liver cells is described. PMEA was conjugated to bi- and trivalent cluster glycosides (K(GN)(2) and K(2)(GN)(3), respectively) with nanomolar affinity for the asialoglycoprotein receptor. The liver uptake of the PMEA prodrugs was more than 10-fold higher than that of the parent drug (52+/-6% and 62+/-3% vs. 4.8+/-0.7% of the injected dose for PMEA) and could be attributed for 90% to parenchymal cells. Accumulation of the PMEA prodrugs in extrahepatic tissue (e.g., kidney, skin) was substantially reduced. The ratio of parenchymal liver cell-to-kidney uptake-a measure of the prodrugs therapeutic window-was increased from 0.058 +/- 0.01 for PMEA to 1.86 +/- 0.57 for K(GN)(2)-PMEA and even 2.69 +/- 0.24 for K(2)(GN)(3)-PMEA. Apparently both glycosides have a similar capacity to redirect (antiviral) drugs to the liver. After cellular uptake, both PMEA prodrugs were converted into the parent drug, PMEA, during acidification of the lysosomal milieu (t(1/2) approximately 100 min), and the released PMEA was rapidly translocated into the cytosol. The antiviral activity of the prodrugs in vitro was dramatically enhanced as compared to the parent drug (5- and 52-fold for K(GN)(2)-PMEA and K(2)(GN)(3)-PMEA, respectively). Given the 15-fold enhanced liver uptake of the prodrugs, we anticipate that the potency in vivo will be similarly increased. We conclude that PMEA prodrugs have been developed with greatly improved pharmacokinetics and therapeutic activity against viral infections that implicate the liver parenchyma (e.g., HBV). In addition, the significance of the above prodrug concept also extends to drugs that intervene in other liver disorders such as cholestasis and dyslipidemia.  相似文献   

19.
The decomposition kinetics of bis-POC PMEA and bis-POC PMPA followed pseudo-first order kinetics with the corresponding mono-POC ester detected as the only observable degradation product for all the pH values studied.The rates of hydrolysis of bis-POC PMEA over the pH range studied was described by The 18O incorporation studies revealed that hydrolysis of bis-POC PMEA at pH 7.0 primarily proceeds via P-O cleavage with an additional minor pathway involving C?O bond cleavage. Hydrolysis of bis-POC PMPA was found to be about 2 fold slower than bis-POC PMEA at pH values above 6.0.  相似文献   

20.
A novel group of hybrid nitric oxide-releasing anti-inflammatory drugs (11) possessing a 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, or 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, nitric oxide (.NO) donor moiety attached via a one-carbon methylene spacer to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. These ester prodrugs (11) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.94-31.6 microM range). All compounds released .NO upon incubation with phosphate buffer (PBS) at pH 7.4 (3.2-11.3% range). In comparison, the percentage of .NO released was significantly higher (48.6-75.3% range) when these hybrid ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both .NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases. O(2)-[(E)-2-(4-Acetylaminophenyl)-3-(4-methanesulfonylphenyl)acryloyloxymethyl]-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11f) is a moderately potent (IC(50)=0.94 microM) and selective (SI>104) COX-2 inhibitor that released 73% of the theoretical maximal release of two molecules of .NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester .NO-donor prodrugs offer a potential drug design concept for the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号