首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainbow trout is unable to utilize high levels of dietary carbohydrates and experiences hyperglycemia after consumption of carbohydrate-rich meals. Carbohydrates stimulate hepatic glycolytic activity, but gene expression of the rate-limiting gluconeogenic enzymes glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) remains high. Although there is significant mRNA expression and activity of gluconeogenic enzymes in trout intestine and kidney, the regulation of these enzymes by diet is not known. We tested the hypothesis that dietary carbohydrate modulates intestinal and renal G6Pase, FBPase and PEPCK. Fish were either fasted or fed isocaloric carbohydrate-free (CF) or high carbohydrate (HC) diets for 14 days. As expected, fish fed HC exhibited postprandial hyperglycemia and enhanced levels of hepatic glucokinase mRNA and activity. Dietary carbohydrates had no significant effect on the expression and activity of PEPCK, FBPase and G6Pase in all three organs. In contrast, fasting enhanced the activity, but not the mRNA expression of both hepatic and intestinal PEPCK, as well as intestinal FBPase. Therefore, the activity of rate-limiting gluconeogenic enzymes in trout can be modified by fasting, but not by the carbohydrate content of the diet, potentially causing hyperglycemia when fed high levels of dietary carbohydrates. In this species consuming low carbohydrate diets at infrequent intervals in the wild, fasting-induced increases in hepatic and intestinal gluconeogenic enzyme activities may be a key adaptation to prevent perturbations in blood glucose during food deprivation. Presented in part at Experimental Biology, April 2006, San Francisco, CA [Kirchner S., Panserat S., Kaushik S. and Ferraris R. FASEB-IUPS-2006 A667.6].  相似文献   

2.
In addition to lactate and pyruvate, some amino acids were found to serve as potential gluconeogenic substrates in the perfused liver ofClarias batrachus. Glutamate was found to be the most effective substrate, followed by lactate, pyruvate, serine, ornithine, proline, glutamine, glycine, and aspartate. Four gluconeogenic enzymes, namely phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase (PC), fructose 1,6-bisphosphatase (FBPase) and glucose 6-phosphatase (G6Pase) could be detected mainly in liver and kidney, suggesting that the latter are the two major organs responsible for gluconeogenic activity in this fish. Hypo-osmotically induced cell swelling caused a significant decrease of gluconeogenic efflux accompanied with significant decrease of activities of PEPCK, FBPase and G6Pase enzymes in the perfused liver. Opposing effects were seen in response to hyperosmotically induced cell shrinkage. These changes were partly blocked in the presence of cycloheximide, suggesting that the aniso-osmotic regulations of gluconeogenesis possibly occurs through an inverse regulation of enzyme proteins and/or a regulatory protein synthesis in this catfish. In conclusion, gluconeogenesis appears to play a vital role inC. batrachus in maintaining glucose homeostasis, which is influenced by cell volume changes possibly for proper energy supply under osmotic stress.  相似文献   

3.
Our objective is to understand the low metabolic utilization of dietary carbohydrates in fish. We compared the regulation of gluconeogenic enzymes at a molecular level in two fish species, the common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata), known to be relatively tolerant to dietary carbohydrates. After cloning of partial cDNA sequences for three key gluconeogenic enzymes (glucose-6-phosphatase (G6Pase), fructose biphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) in the two species, we analyzed gene expressions of these enzymes 6 and 24 h after feeding with (20%) or without carbohydrates. Our data show that there is at least one gluconeogenic enzyme strongly regulated (decreased expression after feeding) in the two fish species, i.e. the PEPCK for common carp and G6Pase/FBPase for gilthead seabream. In these fish species, the regulation seems to be similar to the mammals at least at the molecular level.  相似文献   

4.
5.
The crude root-peel extract of Flemingia vestita, containing genistein as the major isoflavone, has a vermifugal/vermicidal effect. It acts by causing flaccid paralysis accompanied by alterations in the activities of several tegumental enzymes and other metabolic activities in the fowl tapeworm, Raillietina echinobothrida. To elucidate the mode of action of the putative phytochemicals on energy metabolism, crude root-peel extract, pure genistein and praziquantel were tested on glucose 6-phosphate dehydrogenase (G6PDH) and enzymes of gluconeogenesis--pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and fructose 1,6-bisphosphatase (FBPase)--in R. echinobothrida. The activities of G6PDH, PEPCK and FBPase were largely restricted to the cytosolic fraction, while PC was confined to the mitochondrial fraction. Following treatments, the G6PDH activity was decreased by 23-31%, whereas the activities of PC and PEPCK were increased by 32-44% and 44-49%, respectively. There was no significant effect by any of the treatments on FBPase activity. We hypothesize that the phytochemicals from F. vestita, genistein in particular, influence the key enzymes of these pathways, which is perhaps a function of high energy demand of the parasite under anthelmintic stress.  相似文献   

6.
We investigated the transport of 14C-methylaminoisobutyric acid (14C-MeAIB) and 14C-alanine oxidation in hepatopancreas and jaw muscle of Chasmagnathus granulata submitted to 24, 72, and 144 h of hypo- or hyperosmotic stress. While 14C-MeAIB uptake increased in jaw muscle and hepatopancreas from crabs submitted to hyperosmotic stress, it did not change in tissues from animals submitted to hypo-osmotic stress. Incubation of jaw muscle and hepatopancreas from control groups with 1 mM ouabain did not decrease 14C-MeAIB uptake. However, ouabain prevented 14C-MeAIB uptake in hepatopancreas at 24 h of hyperosmotic stress. In contrast, in jaw muscle from crabs submitted to the same conditions, 14C-MeAIB uptake was not prevented by ouabain in the incubation medium. Jaw muscle from the control group produced four times more 14CO2 from 14C-alanine than the hepatopancreas. During hypo-osmotic stress, amino acid oxidation does not seem to be one of the pathways implicated in the decrease of the amino acid pools in hepatopancreas and jaw muscle. In contrast, during hyperosmotic stress the reduction in 14C-alanine oxidation appears to be one of the mechanisms involved in the increase of the amino acid pool in the hepatopancreas.  相似文献   

7.
Stress due to claw ablation was tested in Macrobrachium rosenbergii males. Dietary high protein and vitamin C were supplemented for amelioration of stress. We used four different treatments: fed with 25% protein and a normal dose (0.12%) of vitamin C (T(1)); 35% protein and a normal dose (0.12%) of vitamin C (T(2)); 25% protein and a high dose (0.24%) of vitamin C (T(3)); and high protein 35% and a high dose (0.24%) of vitamin C (T(4)) for 30 days. All test prawns (T(1) to T(4)) were subjected to ablation of their second chelate legs after the 15th day of the feeding trial. A control treatment was maintained without claw ablation and fed with 25% protein. Haemolymph glucose, hepatopancreatic glycogen, muscle ascorbate and enzyme activities (glucose 6 phosphatase (G6Pase), fructose-1,6-bisphosphatase (FBPase), lactate dehydrogenase (LDH), Alanine aminotransferase (ALT) in hepatopancreas) were tested at different recovery periods (0, 6, 24 h, 7 and 14 days). Results indicate a high glucose level immediately after claw ablation and a concomitant increase in gluconeogenic enzymes (G6Pase and FBPase). However, glycogen reserves were regained in the treatments due to claw ablation stress after 24 h. LDH and ALT activity decreased in the hepatopancreas of M. rosenbergii up to 24 h after claw ablation. Overall results indicate that claw ablation is stressful to M. rosenbergii and high protein and vitamin C diet may mitigate stress due to claw ablation.  相似文献   

8.
9.
The objective of the study described here was to analyze in rainbow trout (Oncorhynchus mykiss) the effects of low protein intake on peripheral glucose phosphorylation capacities and gluconeogenic enzymes in kidney and intestine. Fish were food-deprived for 14 days or kept under a low and a high protein intake regime using a pair feeding protocol in order to maintain constant carbohydrate and lipid intakes. We analyzed the effect of protein restriction on (i) hepatic, renal and intestinal fructose-1.6-bisphophatase (FBPase) and glucose-6-phosphatase (G6Pase) enzymes at the molecular and enzymatic levels and (ii) glucose phosphorylation activities (hexokinases) in the liver, peri-visceral adipose tissue, red muscle and white muscle. Irrespective of the nutritional status, we observed the same levels of hexokinase activities in all the tissues studied. Renal G6Pase and FBPase gene expression and activities were not modified among the groups. In contrast, there was increased intestinal FBPase gene expression in fish under a low protein intake and higher G6Pase activities in both groups of fed fish. This result differs from what is observed in rats and suggest a role of intestine in the regulation of postprandial gluconeogenesis in fed trout. In conclusion, our data did not demonstrate any specific effect of low dietary protein intake to either gluconeogenic capacities or glucose phosphorylation capacities in rainbow trout.  相似文献   

10.
11.
Daytime restricted feeding (DRF) promotes circadian adaptations in the metabolic processing of nutrients. We explored the hepatic gluconeogenic response in DRF rats by the temporal profiles of the following: (1) the activity of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), as well as the periportal and pericentral distribution of PEPCK; (2) conversion of alanine to glucose; (3) glycemia and liver glycogen content; (4) presence of glycogen synthase (GYS) and its phosphorylated form (at Ser641, pGYS); (5) circulating levels of corticosterone, glucagon and insulin; (6) glucose-tolerance test; and (7) sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α). The results showed that DRF promoted: (1) a phase shift in G6Pase activity and an increase in PEPCK activity as well as a change of PEPCK from periportal to pericentral hepatocytes, (2) a net conversion of alanine to circulating glucose, (3) a decrease in glycemic values and a phase shift in the liver glycogen content, (4) a phase shift in GYS and an increase of pGYS, (5) an increase in the daily levels of corticosterone and glucagon, but a reduction in the levels of insulin, (6) normal glucose homeostasis in all groups and (7) an enhanced presence of SIRT1 and PGC-1α. It is proposed that the increased gluconeogenic in DRF group promotes synthesis of hepatic glycogen and the production of glucose. These results could be a modulation of the gluconeogenic process due to rheostatic adaptations in the endocrine, metabolic and timing regulation of liver and could be associated with the physiology of the food entrained oscillator.  相似文献   

12.
13.
14.
Effect of 5-100 microM epigallocatechin gallate (EGCG) on hepatic glucose 6-phosphatase (G6Pase) system was investigated. EGCG inhibited G6Pase in intact but not in permeabilized rat liver microsomes, suggesting the interference with the transport. However, EGCG did not hinder microsomal glucose 6-phosphate (G6P) uptake. Instead, it increased the accumulation of radioactivity after the addition of [(14)C]G6P, presumably due to a slower release of [(14)C]glucose, the product of luminal hydrolysis. Indeed, EGCG was found to inhibit microsomal glucose efflux. Since G6Pase activity is depressed by glucose in a concentration-dependent manner, we concluded that EGCG inhibits G6Pase through an elevated luminal glucose level.  相似文献   

15.
Sodium arsenite has been demonstrated to alter the expression of genes associated with glucose homeostasis in tissues involved in the pathogenesis of type 2 diabetes; however, the underlying molecular mechanism has not been fully elucidated yet. In this study, we report that the sodium arsenite-induced gene expression of the small heterodimer partner (SHP; NR0B2), an atypical orphan nuclear receptor, regulates the expression of hepatic gluconeogenic genes. Sodium arsenite augments hepatic SHP mRNA levels in an AMP-activated protein kinase (AMPK)-dependent manner. Sodium arsenite activated AMPK and was shown to perturb cellular ATP levels. The arsenite-induced SHP mRNA level was blocked by adenoviral overexpression of dominant negative AMPK (Ad-dnAMPKalpha) or by the AMPK inhibitor compound C in hepatic cell lines. We demonstrated the dose-dependent induction of SHP mRNA levels by sodium arsenite and repressed the forskolin/dexamethasone-induced gene expression of the key hepatic gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Ad-dnAMPKalpha blocked the repressive effects of arsenite-induced SHP on PEPCK and G6Pase. Sodium arsenite inhibited the promoter activity of PEPCK and G6Pase, and this repression was abolished by small interfering (si)RNA SHP treatments. The knockdown of SHP expression by oligonucleotide siRNA SHP or adenoviral siRNA SHP released the sodium arsenite-mediated repression of forskolin/dexamethasone-stimulated PEPCK and G6Pase gene expression in a variety of hepatic cell lines. Results from our study suggest that sodium arsenite induces SHP via AMPK to inhibit the expression of hepatic gluconeogenic genes and also provide us with a novel molecular mechanism of arsenite-mediated regulation of hepatic glucose homeostasis.  相似文献   

16.
The content of betaine and alanine in gills of the ribbed mussel Geukensia demissa increases rapidly following transfer of the tissues from 250 to 1000 mOsm seawater (SW). Increases in alanine, proline and glycine account for most of the increase in the amino acid pool. The betaine content increases from 45 to 150 μmol/g dry weight within 12 h. Transfer of isolated gills from 250 to 1000 mOsm SW results in a temporary cessation of all ciliary activity. Within 20–40 min following transfer, ciliary activity has recovered. Recovery of ciliary activity precedes recovery of tissue hydration. The uric acid content of gills is unchanged by exposure to hyperosmotic media, suggesting that uric acid is not a store of nitrogen for alanine synthesis from pyruvate. In other organisms, the accumulation of betaine in response to hyperosmotic stress is a slow (days to weeks) process that probably involves changes in gene expression. The rapid, large increases in betaine reported here suggest that gene expression is not a factor in volume recovery by euryhaline bivalve tissues exposed to acute hyperosmotic stress.  相似文献   

17.
1. The effects of starvation and refeeding on the disposal of oral [14C]triolein between 14CO2 production and 14C-lipid accumulation in tissues of virgin rats, lactating rats and lactating rats with pups removed were studied. 2. Starvation (24 h) increased 14CO2 production in lactating rats and lactating rats with pups removed to values found in virgin rats. This increase was accompanied by decreases in 14C-lipid accumulation in mammary gland and pups of lactating rats and in white and brown adipose tissue of lactating rats with pups removed. 3. Short-term (2 h) refeeding ad libitum decreased 14CO2 production in lactating rats and lactating rats with pups removed, and restored the 14C-lipid accumulation in mammary glands plus pups and in white and brown adipose tissue respectively 4. Insulin deficiency induced with mannoheptulose inhibited the restoration of 14C-lipid accumulation in white adipose tissue on refeeding of lactating rats with pups removed, but did not prevent the restoration of 14C-lipid accumulation in mammary gland. 5. Changes in the activity of lipoprotein lipase in mammary gland and white adipose tissue paralleled the changes in 14C-lipid accumulation in these tissues. 6. It is concluded that 14C-lipid accumulation in mammary gland may not be affected by changes in plasma insulin concentration and that it is less sensitive to starvation than is lipogenesis or lactose synthesis. This has the advantage that the milk lipid content can still be maintained from hepatic very-low-density lipoprotein for a period after withdrawal of food. The major determinant of the disposal of oral 14C-triolein appears to be the total tissue activity of lipoprotein lipase. When this is high in mammary gland (fed lactating rats) or white adipose tissue (fed lactating rats with pups removed), less triacylglycerol is available for the muscle mass and consequently less is oxidized.  相似文献   

18.
This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glucose 6-phosphatase catalytic subunit (G6PC1) gene expression, an absence of glucose release from isolated hepatocytes and restored hepatic glycogen stores in the fed state in HP fed rats. These effects are mainly due to the ability of high physiological concentrations of portal blood amino acids to counteract glucagon-induced liver G6PC1 but not PEPCK gene expression. These results agree with the idea that the metabolic pathway involved in glycogen synthesis is dependent upon the pattern of nutrient availability. This nonoxidative glyconeogenic disposal pathway of gluconeogenic substrates copes with amino excess and participates in adjusting both amino acid and glucose homeostasis. In addition, the pattern of PEPCK and G6PC1 gene expression provides evidence that neither the kidney nor the small intestine participated in gluconeogenic glucose production under our experimental conditions. Moreover, the main glucose-6-phosphatase (G6Pase) isoform expressed in the small intestine is the ubiquitous isoform of G6Pase (G6PC3) rather than the G6PC1 isoform expressed in gluconeogenic organs.  相似文献   

19.
Carbonic anhydrase (CA) was identified by differential display PCR analysis as one of the differentially expressed genes in the gills of low salinity stressed (transferred from 25 to 3 ppt) Penaeusmonodon. To further characterize the role of CA in the regulation of salinity stress, the cDNA sequence of P.monodon carbonic anhydrase (PmCA) was attained by rapid amplification of cDNA ends and found to have a total length of 1194 bp. The deduced amino acid of PmCA shares 73% sequence identity with the CA homologue recently isolated from the crab, Callinectessapidus. Real time RT-PCR and enzymatic activity analyses were employed to determine the changes in the PmCA mRNA expression and total CA activity, respectively, after shrimps were transferred from 25 to 3 ppt salinities for up to 2 weeks. Compared to the CA level in the control group (25 ppt), PmCA mRNA was significantly increased in shrimp gills at 24 h after hypo-osmotic stress. In contrast, the epipodites and antennal gland displayed decreased levels of mRNA expression. The gross CA enzymatic activity after hypo-osmotic stress was increased in the shrimp gills but remained stable in the epipodites and antennal gland.  相似文献   

20.
The effects of capture stress, exposure to a hypo-osmotic environment and elevated water temperatures on the ascorbic acid (AsA) content of several mullet, Mugil cephalus , tissues were examined. All the treatments significantly altered tissue AsA levels, but the pattern of AsA fluctuations varied. Gill AsA concentrations increased two fold after exposure to a hypo-osmotic medium (salinity changed from 30‰ to 5‰), whereas AsA content in this tissue declined after capture. Both treatments depleted AsA reserves in the kidney. AsA concentrations in the brain increased after exposure to low salinity and elevated water temperatures, but were unaffected by capture stress. None of the treatments caused long term alteration of hepatic AsA reserves. Ascorbic acid inhibited oubain-sensitive Na+, K+-ATPase activity of gill tissue in vitro . The results suggest an involvement of AsA in osmo- or ion-regulatory functions of teleosts gills, salinity and thermal adaptation mechanisms in neural tissue, and the response of renal tissue to adverse environmental stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号