首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A male gametophyte of the endemic Antarctic red macroalga Palmaria decipiens (Reinsch) Ricker was cultivated under fluctuating daylengths, simulating the seasonal changes at the site of collection (King George Island, Antarctica). The plant was maintained at 0±1°C, an irradiance of 25 μmol m-2 s-1 and under growth-saturating nutrient conditions. Samples were taken at intervals of 3–6 weeks to measure growth, photosynthesis, dark respiration and pigment content. The growth optimum in spring coincided with a higher photosynthetic activity. Whereas dark respiration was constantly low over the year, there was a rapid increase in maximum photosynthetic rate (Pmax) in conditions corresponding to September and October. This was correlated with a change in the initial slope (α) of the photosynthesis versus irradiance (P vs I) curve. Higher activity in photosynthesis mainly resulted from higher Chl a and phycobilin concentrations during Antarctic spring, an indication of an increase in absorption cross-section areas of photosynthetic reaction centres. These changes in physiology are discussed in relation to the seasonal growth “strategy” of the species, which is controlled by seasonal variation in daylength. Received: 27 February 1995/Accepted 3 October 1995  相似文献   

2.
 The freezing and freezing survival of the Antarctic nematode Panagrolaimus davidi after exposure to solutions of different osmotic concentrations has been examined using a thermoelectric cooling stage and multi-specimen cooling block to see if there is any evidence that freeze-induced desiccation prevents inoculative freezing. The nematodes froze in all the test solutions used (up to 1138 mosmol ⋅ l-1) and at all cooling rates and nucleation temperatures tested. Freezing survival was at its maximum in 0.1 mol ⋅ l-1 NaCl in artificial tap water after 1 h exposure to the test solution and in artificial tap water after 24 h exposure. Hyperosmotic and hyposmotic stress adversely affected the nematodes’ ability to survive freezing. In non-frozen controls survival declined with increasing osmolality of the test solution. Measurements of the osmolality of water extracted from a variety of moss samples indicate that the nematodes are exposed to an osmotic concentration of about 9 mosmol ⋅ l-1 in their natural habitat. This is close to that of artificial tap water. Our experiments, and measurements of freeze concentration effects in the literature, indicate that freeze-induced desiccation is unlikely to prevent inoculative freezing and the survival of nematodes over the winter. Accepted: 5 May 1996  相似文献   

3.
Halogenating activities detected in Antarctic macroalgae   总被引:1,自引:0,他引:1  
 Halogenating activities were determined in samples of 18 cultivated species of brown, red and green macroalgae from the Antarctic. Activities for the halogenating organic compounds with bromide, iodide and chloride were found. Investigated red algae (rhodophytes) showed higher brominating and iodinating activities compared to brown (phaeophytes) and green (chlorophytes) algae. The highest brominating and iodinating activities were measured in the red algae Plocamium cartilagineum (1.11±0.01 U g-1 wet algal weight and 0.18 U g-1 wet algal weight, respectively) and Myriogramme mangini (3.62±0.17 U g-1 wet algal weight and 4.5 U g-1 wet algal weight, respectively). Chlorinating activities were detected in the red alga Plocamium cartilagineum only (0.086 U g-1 wet algal weight). Received: 12 February 1996/Accepted: 20 June 1996  相似文献   

4.
 Nitrogen (N) and energy (E) requirements were measured in adult Carollia perspicillata which were fed on four experimental diets. Bats ate 1.3–1.8 times their body mass ⋅ day-1 and ingested 1339.5–1941.4 kJ ⋅ kg-0.75 ⋅ day-1. Despite a rapid transit time, dry matter digestibility and metabolizable E coefficient were high (83.3% and 82.4%, respectively), but true N digestibility was low (67.0%). Mass change was not correlated with E intake, indicating that bats adjusted their metabolic rate to maintain constant mass. Bats were able to maintain constant mass with digestible E intake as low as 1168.7 kJ ⋅ kg-0.75 ⋅ day-1 or 58.6 kJ ⋅ . Metabolic fecal N and endogenous urinary N losses were 0.87 mg N ⋅ g-1 dry matter intake and 172.5 mg N ⋅ kg-0.75 ⋅ day-1, respectively, and bats required 442 mg N ⋅ kg-0.75 ⋅ day-1 (total nitrogen) or 292.8 mg N ⋅ kg-0.75 ⋅ day-1 (truly digestible nitrogen) for N balance. Based on E and N requirements and digestibilities, it was calculated that non-reproductive fruit bats were able to meet their N requirements without resorting to folivory and without over-ingesting energy. It was demonstrated that low metabolic fecal requirements allowed bats to survive on low-N diets. Accepted: 23 June 1996  相似文献   

5.
 Stimulatory effects of saturated fatty acids consisting of 4 (butyrate), 8 (octanoate), 12 (laurate) and 16 (palmitate) carbon atoms, as well as acetylcholine on pancreatic amylase release were assessed in tissue segments isolated from sheep, rats, hamsters, field voles and mice. The amount of amylase release induced by the fatty acids (1 μmol ⋅ l-1 to 10 mml ⋅ l-1) and by acetylcholine (10 nmol ⋅ l-1 to 100 μmol ⋅ l-1) increased in a concentration-dependent manner, and the maximum response in response to the fatty acids was obtained at the maximal dose used. The maximum increase in amylase release in response to butyrate or octanoate was highly and significantly (r=0.974, P<0.001) dependent on the log value of the mean body mass in the following order: sheep>rats>hamsters>field voles>mice. On the other hand, the response to laurate and palmitate was variable among animal species. Addition of atropine (1.4 μmol ⋅ l-1) to the medium did not reduce the responses to octanoate stimulation, but significantly reduced acetylcholineinduced responses, implying that the effects of the fatty acids were not mediated through activation of muscarinic acetylcholine receptors. Reduction of calcium ion concentration in the medium significantly inhibited the responses induced by the fatty acids and acetylcholine, suggesting that amylase release depends on extracellular calcium ions. Accepted: 14 May 1996  相似文献   

6.
 Electrogenic cation transport across the caecal epithelium of the leech Hirudo medicinalis was investigated using modified Ussing chambers. Transepithelial resistance (R T ) and potential difference (V T ) were 61.0±3.5 Ω ⋅ cm2 and −1.1±0.2 mV (n=149), respectively, indicating that leech caecal epithelium is a “leaky” epithelium. Under control conditions short circuit current (I SC ) and transepithelial Na+ transport rate (I Na ) averaged at 22.1±1.5 μA ⋅ cm-2 and 49.7±2.6 μA ⋅ cm-2, respectively. Mucosal application of amiloride (100 μmol ⋅ l-1) or benzamil (50 μmol ⋅ l-1) influenced neither I SC nor I Na . The transport system in the apical membrane showed no pronounced cation selectivity and a linear dependence on mucosal Na+ concentration. Removal of mucosal Ca2+ increased I SC by about 50% due to an increase of transepithelial Na+ transport. Trivalent cations (La3+ and Tb3+, 1 mmol ⋅ l-1 both) added to the mucosal Ringer solution reduced I Na by more than 40%. Serosal ouabain (1 mmol ⋅ l-1) almost halved I SC and I Na while 0.1% (=5.4 mmol ⋅ l-1) DNP decreased I Na to 11.8±5.1% of initial values. Serosal addition of cAMP increased both I SC and I Na whereas the neurotransmitters FMRFamide, acetylcholine, GABA, L-dopa, serotonin and dopamine failed to show any effects; octopamine, glycine and L-glutamate reduced I Na markedly. On the basis of these results we conclude that in leech caecal epithelium apical uptake of monovalent cations is mediated by non-selective cation conductances which are sensitive to extracellular Ca2+ but insensitive to amiloride. Basolaterally Na+ is extruded via ouabain-sensitive and -insensitive ATPases. cAMP activates Na+ transport across leech caecal epithelium, although the physiological stimulus for cAMP-production remains unknown. Accepted: 20 May 1996  相似文献   

7.
Ulothrix zonata (Weber and Mohr) Kütz. is an unbranched filamentous green alga found in rocky littoral areas of many northern lakes. Field observations of its seasonal and spatial distribution indicated that it should have a low temperature and a high irradiance optimum for net photosynthesis, and at temperatures above 10°C it should show an increasingly unfavorable energy balance. Measurements of net photosynthesis and respiration were made at 56 combinations of light and temperature. Optimum conditions were 5°C and 1100 μE·m?2·s?1 at which net photosynthesis was 16.8 mg O2·g?1·h?1. As temperature increased above 5° C optimum irradiance decreased to 125 μE·m?2·s?1 at 30°C. Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiance exposures of 125 μE·m?2·s?1 or greater. Polynomials were fitted to the data to generate response surfaces. Polynomial equations represent statistical models which can accurately predict photosynthesis and respiration for inclusion in ecosystem models.  相似文献   

8.
 Ca2+ sensitivity and caffeine-induced sensitivity changes in skinned carp heart fibers were compared with those of guinea pig and rat heart. The Ca2+ concentration-response curves of saponin-treated left atrial skinned fibers obtained from guinea pig and rat were almost identical. Doses of 5 and 20 mmol ⋅ l-1 caffeine shifted this curve to the left. However, when a relatively high concentration (50 mmol ⋅ l-1) of caffeine was used, the left-ward shift was reduced. Caffeine reduced the peak of the Ca2+ concentration-response curve. The Ca2+ concentration-response curve of carp atrial skinned fiber is almost identical to that of guinea pig and rat. However, a further increase in Ca2+ sensitivity was observed even when 50 mmol ⋅ l-1 caffeine was added. Similarly, a decrease in the response curve peak was also observed. Ca2+ sensitivity in ventricular skinned fibers obtained from carp was almost the same as that observed for the atrial, but the increase in Ca2+ sensitivity due to caffeine was larger. In addition, a further increase was also observed when 50 mmol ⋅ l-1 caffeine was added. These results indicate that the Ca2+ sensitivity of contractile proteins in atrial muscles from carp heart is the same as that of guinea pig and rat. It is, however, assumed that there are some differences in properties in the contractile proteins. It is also assumed that there are some differences between the atrial and ventricular muscles of carp heart. Accepted: 17 May 1996  相似文献   

9.
 In order to investigate the cellular mechanisms involved in amylase release in response to stimulation with short-chain fatty acids, changes in intracellular calcium concentration ([Ca2+]i), membrane current and amylase release were measured in pancreatic acinar cells of sheep. Both octanoate and acetylcholine raised [Ca2+]i in acinar cells in a concentration-dependent manner. The rise in [Ca2+]i in response to the stimulation with octanoate (10 mmol ⋅ l-1) was reduced in a medium without CaCl2, but was markedly enhanced by reintroduction of CaCl2 into the medium up to 2.56 mmol ⋅ l-1. Perfusion of the cells with a medium containing octanoate (5 mmol ⋅ l-1) or acetylcholine (0.5 μmol ⋅ l-1) immediately raised inward current across the cell membrane at a holding-membrane potential of −30 mV. The inward current became greater as the holding potential became more negative. The equilibrium potential was 1.8 mV and 3.9 mV for octanoate and acetylcholine, respectively, being consistent with that for Cl-. Although intracellular application of octanoate through a patch-clamp pipette also raised inward current after several minutes in some cells (4 out of 12), this possibility was significantly smaller than that for extracellular application. In other cells, even though the intracellular application of octanoate did not cause an increase in current, it always caused responses immediately after introduction of the fatty acid into the medium. Stimulation with fatty acid as well as acetylcholine raised amylase release in a concentration-dependent manner in cells dispersed from tissue segments with crude collagenase and trypsin inhibitor. Without trypsin inhibitor, crude collagenase significantly and selectively reduced the octanoate (10 mmol ⋅ l-1)-induced amylase release. Dispersion with crude collagenase and trypsin significantly reduced both responses induced by octanoate and acetylcholine (5.5 μmol ⋅ l-1). We conclude that fatty acids and acetylcholine increase [Ca2+]i, which consequently evokes a rise in transmembrane ion (Cl-) conductance and amylase release, and that trypsin-sensitive protein(s) in the cell membrane are involved in secretory processes activated by stimulation with fatty acids in ovine pancreatic acinar cells. Accepted: 14 May 1996  相似文献   

10.
There have been no studies to date on the mechanisms of inorganic carbon acquisition by Antarctic microalgae. Consequently, we have examined inorganic carbon (DIC) use inNitzschia frigida, a diatom typical of the Antarctic bottom-ice community. The K0.5(CO2) of photosynthesis in this organism was estimated to be 1.09 μM at pH 7.5. The internal concentration of DIC was approximately 4050 μM at an external [DIC] of 45 μM. At air-equilibration levels of inorganic carbon this would be sufficient for a ten-fold accumulation ratio of CO2. Cells ofN. frigida are capable of carbon-dependent photosynthesis at rates that exceed that expected from uncatalysed CO2 supply to the cell. About 25% of the total carbonic anhydrase activity appears to be associated with the cell surface inN. frigida. These results support the hypothesis thatN. frigida, like many microalgae from temperate waters, has an active carbon-concentrating mechanism, associated with the ability to utilize external HCO 3 for photosynthesis.  相似文献   

11.
The effect of low temperatures and freeze-thaw stress on photosynthetic carbon exchange in an Antarctic population of the turf-forming moss species Polytrichum alpestre Hoppe was investigated using infra-red gas analysis. Photosynthetic recovery from freezing was found to depend on the absolute depth of low temperature experienced. Repeated freeze-thaw cycles caused a greater reduction in gross photosynthesis than constant freezing over the same period of time suggesting that the freeze-thaw event itself, and not just cold temperatures, causes damage. The frequency of freeze-thaw events was significant: freeze-thaw cycles every 12 h inflicted more damage than freezethaw cycles every 24 or 48 h. Most damage occurred during the first cycle; relatively little was recorded during subsequent cycles. At +10°C, gross CO2 flux was directly proportional to moss water content between 0.3 and 3.5 g·g–1 dry mass. Moss samples with a low water content withstood freeze-thaw cycles to -5, -10 and-20°C better than samples with a high water content indicating that desiccation in the field may improve survival at low temperatures. Microclimate data for field populations of Polytrichum alpestre at Signy Island suggest that sub-zero temperatures and freeze-thaw stress may act as limiting factors on the species' distribution and viability, particularly when the insulating effect of snow cover is small.  相似文献   

12.
 To investigate the functions of GTP-binding protein(s) in the melanosome-aggregating response in fish melanophores, the effects of activators of G-proteins, namely, mastoparan and compound 48/80, were examined in cultured melanophores of the balck-moor goldfish, Carassius auratus. Both mastoparan and compound 48/80 induced an approximately 40% increase in the GTP-hydrolyzing activity in the melanophore membranes compared to the basal level. In intact melanophores, these compounds inhibited the effect of 3-isobutyl-1-methylxanthine, which induced the accumulation of intracellular cAMP. Pretreatment of melanophores with pertussis toxin at 1 μg ⋅ ml-1 for 15 h attenuated the inhibitory effect of mastoparan on the accumulation of cAMP. However, pretreatment with the toxin only slightly attenuated the inhibitory effect of compound 48/80 on the accumulation of cAMP. In addition, compound 48/80 at 1 mg ⋅ ml-1 induced full aggregation of the melanosomes in melanophores, though mastoparan at 5 μmol ⋅ l-1 induced only 10–20% aggregation of melanophores. These results suggest that mastoparan and compound 48/80 can each activate the inhibitory G-protein in goldfish melanophores, which results in inhibition of adenylate cyclase activity. This signal-transduction pathway is involved in the aggregation of melanosomes in these cells. Accepted: 3 June 1996  相似文献   

13.
 The autotrophic ciliate Mesodinium rubrum Lohmann was observed during winter and spring in saline lakes ranging in salinity from 2 to 78‰ in the Vestfold Hills, Antarctica. The ciliate remained active during winter, and contained chlorophyll even though the level of light available for photosynthesis was minimal. No evidence of encystment as a means of survival during winter was observed. A seasonal study in one of the lakes, Ace Lake, revealed that M. rubrum was present throughout the year at abundances ranging from 1×104 to 3.5×105 cells l-1. During the winter period, when little light penetrated the lake’s ice cover, cells were most common immediately under the ice at 2 m, where cell numbers were typically 8×104 cells l-1. Received: 3 January 1996/Accepted: 21 April 1996  相似文献   

14.
 A spectacular mound-like reef formation (126 m in circumference, 10 m high) dominated by highly arched and record-size colonies of the unattached mushroom coral Halomitra pileus, along with 17 other species of the family Fungiidae, occurs in 31 m of water on the sedimentary lagoon floor of the Great Astrolabe Reef, Fiji. Core samples show radiocarbon dates which indicate that the formation hypothetically began building ∼4500 y ago, with a calculated mean accretion rate of 2.2 mm ⋅ y-1. The majority of fossil and living material is contributed by H. pileus colonies between 40–70 cm mean diameter, with some individuals up to 1.5 m in diameter. The size, fungiid diversity, and geological history of the bioherm is unprecedented and represents the first example of a coral reef constructed almost entirely by Fungiidae. Accepted: 29 July 1996  相似文献   

15.
Irradiance data software developed by the NREL Solar Radiation Laboratory (Simple Model of Atmospheric Radiative Transfer of Sunshine, SMARTS) has been used for modelling photosynthesis. Spectra and total irradiance were expressed in terms of quanta [mol m−2 s−1, photosynthetic photon flux density, PPFD (400–700 nm)]. Using the SMARTS software it is possible to (1) calculate the solar spectrum for a planar surface for any given solar elevation angle, allowing for the attenuating effects of the atmosphere on extraterrestrial irradiance at each wavelength in the 400–700 nm range and for the thickness of atmosphere the light must pass through during the course of a day, (2) calculate PPFD vs. solar time for any latitude and date and (3) estimate total daily irradiance for any latitude and date and hence calculate the total photon irradiance for a whole year or for a growing season. Models of photosynthetic activity vs. PPFD are discussed. Gross photosynthesis (P g) vs. photosynthetic photon flux density (PPFD) (P g vs. I) characteristics of single leaves compared to that of a canopy of leaves are different. It is shown that that the optimum irradiance for a leaf (Iopt) is the half-saturation irradiance for a battery of leaves in series. A C3 plant, with leaves having an optimum photosynthetic rate at 700 μmol m−2 s−1 PPFD, was used as a realistic worked example. The model gives good estimates of gross photosynthesis (P g) for a given date and latitude. Seasonal and annual estimates of P g can be made. Taking cloudiness into account, the model predicts maximum P g rates of about 10 g(C) m−2 d−1, which is close to the maximum reported P g experimental measurements.  相似文献   

16.
Temperature requirements for growth, photosynthesis and dark respiration were determined for five Antarctic red algal species. After acclimation, the stenothermal species Gigartina skottsbergii and Ballia callitricha grew at 0 or up to 5 °C, respectively; the eurythermal species Kallymenia antarctica, Gymnogongrus antarcticus and Phyllophora ahnfeltioides grew up to 10 °C. The temperature optima of photosynthesis were between 10 and 15 °C in the stenothermal species and between 15 and 25 °C in the eurythermal species, irrespective of the growth temperature. This shows that the temperature optima for photosynthesis are located well below the optima from species of other biogeographical regions, even from the Arctic. Respiratory rates rose with increasing temperatures. In contrast to photosynthesis, no temperature optimum was evident between 0 and 25 °C. Partial acclimation of photosynthetic capacity to growth temperature was found in two species. B. callitricha and Gymnogongrus antarcticus acclimate to 0 °C, and 5 and 0 °C, respectively. But acclimation did in no case lead to an overall shift in the temperature optimum of photosynthesis. B. callitricha and Gymnogongrus antarcticus showed acclimation of respiration to 5 °C, and P. ahnfeltioides to 5 and 10 °C, resulting in a temperature independence of respiration when measured at growth temperature. With respect to the acclimation potential of the species, no distinction can be made between the stenothermal versus the eurythermal group. (Net)photosynthetic capacity:respiration (P:R) ratios showed in all species highest values at 0 °C and decreased continuously to values lower than 1.0 at 25 °C. In turn, the low P:R ratios at higher temperatures are assumed to determine the upper temperature growth limit of the studied species. Estimated daily carbon balance reached values between 4.1 and 30.7 mg C g−1 FW day−1 at 0 °C, 16:8 h light/dark cycle, 12–40 μmol m−2 s−1. Received: 4 November 1999 / Accepted: 7 March 2000  相似文献   

17.
Exposure to high temperatures affects the photosynthetic processes in marine benthic microalgae by limiting the transport of electrons, thus reducing the ability of the cell to use light. This causes damage to the Photosystem II (PSII) and may lead to photoinhibition. However, the PSII of benthic microalgal communities from Brown Bay, eastern Antarctica, were relatively unaffected by significant changes in temperature. Benthic microalgae exposed to temperatures up to 8°C and an irradiance of 450 μmol photons m−2 s−1 did not experience any photosynthetic damage or irreversible photoinhibition. The effective quantum yield (∆F/F m′) at 8°C (0.433 ± 0.042) was higher by comparison to cell incubated at −0.1°C (0.373 ± 0.015) with similar irradiances. Temperatures down to −5°C at a similar irradiance showed a decrease in photosynthesis with decreasing temperature, but no severe photoinhibition as the cells were able to dissipate excess energy via non-photochemical quenching and recover from damage. These responses are consistent with those recorded in past studies on Antarctic benthic microalgae and suggest that short-term temperature change (from −5 to 8°C) will not do irreversible damage to the PSII and will not affect the photosynthesis of the benthic microalgae.  相似文献   

18.
Phenology, irradiance and temperature characteristics of a freshwater benthic red alga, Nemalionopsis tortuosa Yoneda et Yagi (Thoreales), were examined from Kagoshima Prefecture, southern Japan for the conservation of this endemic and endangered species. Field surveys confirmed that algae occurred in shaded habitats from winter to early summer, and disappeared during August through November. A net photosynthesis–irradiance (PE) model revealed that net photosynthetic rate quickly increased and saturated at low irradiances, where the saturating irradiance (Ek) and compensation irradiance (Ec) were 10 (8–12, 95% credible interval (CRI)) and 8 (6–10, 95% CRI) μmol photon m?2 s?1, respectively. Gross photosynthesis and dark respiration was determined over a range of temperatures (8–36°C) by dissolved oxygen measurements, and revealed that the maximum gross photosynthetic rate was highest at 29.5 (27.4–32.0, 95%CRI) °C. Dark respiration also increased linearly when temperature increased from 8°C to 36°C, indicating that the increase in dark respiration at higher temperature most likely caused decreases in net photosynthesis. The maximum quantum yield (Fv/Fm) that was determined using a pulse amplitude modulated‐chlorophyll fluorometer (Imaging‐PAM) was estimated to be 0.51 (0.50–0.52, 95%CRI) and occurred at an optimal temperature of 21.7 (20.1–23.4, 95%CRI) °C. This species can be considered well‐adapted to the relatively low natural irradiance and temperature conditions of the shaded habitat examined in this study. Our findings can be applied to aid in the creation of a nature‐reserve to protect this species.  相似文献   

19.
The oxygen and nutrient dynamics of the zooxanthellate, upside down jellyfish (Cassiopea sp.), were determined both in situ and during laboratory incubations under controlled light conditions. In the laboratory, Cassiopea exhibited a typical Photosynthesis–Irradiance (P–I) curve with photosynthesis increasing linearly with irradiance, until saturation was reached at an irradiance of ~400 μE m−2 s−1, with photosynthetic compensation (photosynthesis = respiration) being achieved at an irradiance of ~50 μE m−2 s−1. Under saturating irradiation, gross photosynthesis attained a rate of almost 3.5 mmol O2 kg WW−1 h−1, whereas the dark respiration rate averaged 0.6 mmol O2 kg WW−1 h−1. Based upon a period of saturating irradiance of 9 h, the ratio of daily gross photosynthesis to daily respiration was 2.04. Thus, photosynthetic carbon fixation was not only sufficient to meet the carbon demand of respiration, but also to potentially support a growth rate of ~3% per day. During dark incubations Cassiopea was a relatively minor source of inorganic N and P, with the high proportion of NO X (nitrate + nitrite) produced indicating that the jellyfish were colonised by nitrifying bacteria. Whereas, under saturating irradiance the jellyfish assimilated ammonium, NO X and phosphate from the bathing water. However, the quantities of inorganic nitrogen assimilated were small by comparison to carbon fixation rates and the jellyfish would need to exploit other sources of nitrogen, such as ingested zooplankton, in order to maintain balanced growth. During in situ incubations the presence of Cassiopea had major effects on benthic oxygen and nutrient dynamics, with jellyfish occupied patches of sediment having 3.6-fold higher oxygen consumption and 4.5-fold higher ammonium regeneration rates than adjacent patches of bare sediment under dark conditions. In contrast at saturating irradiance, jellyfish enhanced benthic photosynthetic oxygen production almost 100-fold compared to the sediment alone and created a small sink for inorganic nutrients, whereas unoccupied sediment patches were sources of inorganic nutrients to the water column. Overall, Cassiopea greatly enhanced the spatial and temporal heterogeneity of benthic fluxes and processes by creating “hotspots” of high activities which switched between being sources or sinks for oxygen and nutrients over diurnal irradiance cycles, as the metabolism of the jellyfish swapped between heterotrophy and net autotrophy.  相似文献   

20.
 Leaf movements of bush bean plants were studied at the relatively low photon flux density of 0.2 mmol/m2 per s, and air temperatures of 25° and 35° C in a growth chamber. A beta-ray gauge system was used to monitor continuously pulvinus water status and bending. Leaf angles were below the horizontal and were linearly related to the soil water content (R≥−0.91 at 25° C and R≥−0.93 at 35° C). The beta-ray transmission maxima coincided with the stem temperature minima in darkness and vice versa when brightness prevailed as the growth chamber temperature varied with the photoperiod. Leaf angle increased linearly with increased beta-ray transmission. The Q10 temperature coefficient, a measure of the metabolic energy requirement for leaf movement between 25° and 35° C was estimated at 1.8, and the corresponding mean Arrhenius constant at 423 kJ/mol for bush bean. Received: 19 July 1996 / Accepted: 9 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号