首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Laetoli footprints and early hominin locomotor kinematics   总被引:1,自引:0,他引:1  
A critical question in human evolution is whether the earliest bipeds walked with a bent-hip, bent-knee gait or on more extended hindlimbs. The differences between these gaits are not trivial, because the adoption of either has important implications for the evolution of bipedalism. In this study, we re-examined the Laetoli footprints to determine whether they can provide information on the locomotor posture of early hominins. Previous researchers have suggested that the stride lengths of Laetoli hominins fall within the range of modern human stride lengths and therefore, Laetoli hominins walked with modern-human-like kinematics. Using a dynamic-similarity analysis, we compared Laetoli hominin stride lengths with those of both modern humans and chimpanzees. Our results indicate that Laetoli hominins could have used either a bent-hip, bent-knee gait, similar to a chimpanzee, or an extended-hindlimb gait, similar to a human. In fact, our data suggest that the Laetoli hominins could have walked near their preferred speeds using either limb posture. This result contrasts with most previous studies, which suggest relatively slow walking speeds for these early bipeds. Despite the many attempts to discern limb-joint kinematics from Laetoli stride lengths, our study concludes that stride lengths alone do not resolve the debate over early hominin locomotor postures.  相似文献   

2.
Researchers have long debated the locomotor posture used by the earliest bipeds. While many agree that by 3–4 Ma (millions of years ago), hominins walked with an extended-limb human style of bipedalism, researchers are still divided over whether the earliest bipeds walked like modern humans, or walked with a more bent-knee, bent-hip (BKBH) ape-like form of locomotion. Since more flexed postures are associated with higher energy costs, reconstructing early bipedal mechanics has implications for the selection pressures that led to upright walking. The purpose of this study is to determine how modern human anatomy functions in BKBH walking to clarify the links between morphology and energy costs in different mechanical regimes. Using inverse dynamics, we calculated muscle force production at the major limb joints in humans walking in two modes, both with extended limbs and BKBH. We found that in BKBH walking, humans must produce large muscle forces at the knee to support body weight, leading to higher estimated energy costs. However, muscle forces at the hip remained similar in BKBH and extended limb walking, suggesting that anatomical adaptations for hip extension in humans do not necessarily diminish the effective mechanical advantage at the hip in more flexed postures. We conclude that the key adaptations for economical walking, regardless of joint posture, seem to center on maintaining low muscle forces at the hip, primarily by keeping low external moments at the hip. We explore the implications of these results for interpreting locomotor energetics in early hominins, including australopithecines and Ardipithecus ramidus.  相似文献   

3.
The costs of different modes of bipedalism are a key issue in reconstructing the likely gait of early human ancestors such as Australopithecus afarensis. Some workers, on the basis of morphological differences between the locomotor skeleton of A. afarensis and modern humans, have proposed that this hominid would have walked in a 'bent-hip, bent-knee' (BHBK) posture like that seen in the voluntary bipedalism of untrained chimpanzees. Computer modelling studies using inverse dynamics indicate that on the basis of segment proportions AL-288-1 should have been capable of mechanically effective upright walking, but in contrast predicted that BHBK walking would have been highly ineffective. The measure most pertinent to natural selection, however, is more likely to be the complete, physiological, or metabolic energy cost. We cannot measure this parameter in a fossil. This paper presents the most complete investigation yet of the metabolic and thermoregulatory costs of BHBK walking in humans. Data show that metabolic costs including the basal metabolic rate (BMR) increase by around 50% while the energy costs of locomotion and blood lactate production nearly double, heat load is increased, and core temperature does not return to normal within 20 minutes rest. Net effects imply that a resting period of 150% activity time would be necessary to prevent physiologically intolerable heat load. Preliminary data for children suggest that scaling effects would not significantly reduce relative costs for hominids of AL-288-1's size. Data from recent studies using forwards dynamic modelling confirm that similar total (including BMR) and locomotor metabolic costs would have applied to BHBK walking by AL-288-1. We explore some of the ecological consequences of our findings.  相似文献   

4.
How viable is the argument that increased locomotor efficiency was an important agent in the origin of hominid bipedalism? This study reviews data from the literature on the cost of human bipedal walking and running and compares it to data on quadrupedal mammals including several non-human primate species. Literature data comparing the cost of bipedal and quadrupedal locomotion in trained capuchin monkeys and chimpanzees are also considered. It is concluded that increased energetic efficiency would not have accrued to early bipeds. Presumably, however, selection for improved efficiency in the bipedal stance would have occurred once the transition was made. Would such a process have included selection for increased limb length? Data on the cost of locomotion vs. limb length reveal no significant relationship between these variables in 21 species of mammals or in human walking or running. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The vertical-climbing account of the evolution of locomotor behavior and morphology in hominid ancestry is reexamined in light of recent behavioral, anatomical, and paleontological findings and a more firmly established phylogeny for the living apes. The behavioral record shows that African apes, when arboreal, are good vertical climbers, and that locomotion during traveling best separates the living apes into brachiators (gibbons), scrambling/climbing/brachiators (orangutans), and terrestrial quadrupeds (gorillas and chimpanzees). The paleontological record documents frequent climbing as an ancestral catarrhine ability, while a reassessment of the morphology of the torso and forelimb in living apes and Atelini suggests that their shared unique morphological pattern is best explained by brachiation and forelimb suspensory positional behavior. Further, evidence from the hand and foot points to a terrestrial quadrupedal phase in hominoid evolution prior to the adoption of bipedalism. The evolution of positional behavior from early hominoids to hominids appears to have begun with an arboreal quadrupedal-climbing phase and proceeded though an orthograde, brachiating, forelimb-suspensory phase, which was in turn followed by arboreal and terrestrial quadrupedal phases prior to the advent of hominid bipedality. The thesis that protohominids climbed down from the trees to become terrestrial bipeds needs to be reexamined in light of a potentially long history of terrestriality in the ancestral protohominid. © 1996 Wiley-Liss, Inc.  相似文献   

6.
7.
灵长类近节指趾骨的弯曲程度被认为是树栖性和悬垂位移行为的一个重要指标。几何形态测量学—多项式曲线拟合法(GM-PCF)提供了一种更加精准的指趾骨弯曲程度的定量化指标,以剔除指趾骨大小因素之后的标准化曲线高度(NPCH)作为其弯曲程度的指标,配合指趾骨的曲线长度,可以更加全面地定量分析灵长类指趾骨弯曲程度与位移行为的对应关系。尤其是涵盖灵长类大部分位移行为方式的15个类群、328个个体、5000余件指趾骨的参考样本,基本可以满足各种化石灵长类指趾骨弯曲程度分析和位移行为方式重建的需求。本文总结了发现有完整第II-V近节指趾骨化石材料的人猿超科成员的颅后骨骼形态适应及位移行为的重建,并运用GM-PCF对这些指趾骨化石的弯曲程度进行了对比分析,以通过指趾骨弯曲程度重建人猿超科成员的位移行为适应,并可为这些人猿超科成员位移行为的完整演化图景增加新的认识。  相似文献   

8.
This study proposes a new way to use metatarsals to identify locomotor behavior of fossil hominins. Metatarsal head articular dimensions and diaphyseal strength in a sample of chimpanzees, gorillas, orangutans, and humans (n = 76) are used to explore the relationships of these parameters with different locomotor modes. Results show that ratios between metatarsal head articular proportions and diaphyseal strength of the hallucal and fifth metatarsal discriminate among extant great apes and humans based on their different locomotor modes. In particular, the hallucal and fifth metatarsal characteristics of humans are functionally related to the different ranges of motion and load patterns during stance phase in the forefoot of humans in bipedal locomotion. This method may be applicable to isolated fossil hominin metatarsals to provide new information relevant to debates regarding the evolution of human bipedal locomotion. The second to fourth metatarsals are not useful in distinguishing among hominoids. Further studies should concentrate on measuring other important qualitative and quantitative differences in the shape of the metatarsal head of hominoids that are not reflected in simple geometric reconstructions of the articulation, and gathering more forefoot kinematic data on great apes to better understand differences in range of motion and loading patterns of the metatarsals. Am J Phys Anthropol 143:198–207, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Center of mass (CoM) oscillations were documented for 81 bipedal walking strides of three chimpanzees. Full‐stride ground reaction forces were recorded as well as kinematic data to synchronize force to gait events and to determine speed. Despite being a bent‐hip, bent‐knee (BHBK) gait, chimpanzee walking uses pendulum‐like motion with vertical oscillations of the CoM that are similar in pattern and relative magnitude to those of humans. Maximum height is achieved during single support and minimum height during double support. The mediolateral oscillations of the CoM are more pronounced relative to stature than in human walking when compared at the same Froude speed. Despite the pendular nature of chimpanzee bipedalism, energy recoveries from exchanges of kinetic and potential energies are low on average and highly variable. This variability is probably related to the poor phasic coordination of energy fluctuations in these facultatively bipedal animals. The work on the CoM per unit mass and distance (mechanical cost of transport) is higher than that in humans, but lower than that in bipedally walking monkeys and gibbons. The pronounced side sway is not passive, but constitutes 10% of the total work of lifting and accelerating the CoM. CoM oscillations of bipedally walking chimpanzees are distinctly different from those of BHBK gait of humans with a flat trajectory, but this is often described as “chimpanzee‐like” walking. Human BHBK gait is a poor model for chimpanzee bipedal walking and offers limited insights for reconstructing early hominin gait evolution. Am J Phys Anthropol 156:422–433, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Compared to most quadrupedal mammals, humans are energetically inefficient when running at high speeds. This fact can be taken to mean that human bipedalism evolved for reasons other than to reduce relative energy cost during locomotion. Recalculation of the energy expended during human walking at normal speeds shows that (1) human bipedalism is at least as efficient as typical mammalian quadrupedalism and (2) human gait is much more efficient than bipedal or quadrupedal locomotion in the chimpanzee. We conclude that bipedalism bestowed an energetic advantage on the Miocene hominoid ancestors of the Hominidae.  相似文献   

11.

Background

Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual’s lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.

Methodology/Principal Findings

Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.

Conclusions/Significance

These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution) rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.  相似文献   

12.
Considerable attention has been given to hand morphology and function associated with knuckle‐walking in the African apes because of the implications they have for the evolution of bipedalism in early hominins. Knuckle‐walking is associated with a unique suite of musculoskeletal features of the wrist and hand, and numerous studies have hypothesized that these anatomical features are associated with the dynamics of load distribution across the digits during knuckle‐walking. We collected dynamic digital pressures on two chimpanzees during terrestrial and simulated arboreal locomotion. Comparisons were made across substrates, limb positions, hand positions, and age categories. Peak digital pressures were similar on the pole and on the ground but were distributed differently across the digits on each substrate. In young animals, pressure was equally high on digits 2–4 on the ground but higher on digits 3 and 4 on the pole. Older animals experience higher pressures on digits 2 and 3 on the ground. Hand posture (palm‐in vs. palm‐back) influenced the distribution and timing of peak pressures. Age‐related increases in body mass also result in higher overall pressures and increased variation across the digital row. In chimpanzees, digit 5 typically bears relatively little load regardless of hand position or substrate. These are the first quantitative data on digital pressures during knuckle‐walking in hominoids, and they afford the opportunity to develop hypotheses about variation among hominoids and biomechanical models of wrist and forearm loading. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Many reasons for the emergence of bipedalism have been proposed, including postural arguments which highlight that a sub-optimal form of bipedalism ("shuffling") might have been used by protohominids to cover short distances between resources that require bipedal standing. Bipedal shuffling may have been employed because it avoids the cost of raising the trunk from the quadrupedal orientation, which we assume is the habitual locomotor stance of protohominids. To date, these postural proposals have not been analytically assessed, a lack we rectify herein. Our model seeks to specify a threshold distance, below which bipedal shuffling uses less energy than quadrupedalism. Parameters for the model include the mechanical cost of transport, the ratio of bipedal to quadrupedal cost, and the cost associated with raising the trunk. We found that, using reasonable model parameters, open distances of approximately 9-16 m support the use of bipedal shuffling. Protohominids may have used shuffling as an energetically effective way to traverse between resource patches.  相似文献   

14.
The lordotic curvature of the lumbar spine (lumbar lordosis) in humans is a critical component in the ability to achieve upright posture and bipedal gait. Only general estimates of the lordotic angle (LA) of extinct hominins are currently available, most of which are based on the wedging of the vertebral bodies. Recently, a new method for calculating the LA in skeletal material has become available. This method is based on the relationship between the lordotic curvature and the orientation of the inferior articular processes relative to vertebral bodies in the lumbar spines of living primates. Using this relationship, we developed new regression models in order to calculate the LAs in hominins. The new models are based on primate group-means and were used to calculate the LAs in the spines of eight extinct hominins. The results were also compared with the LAs of modern humans and modern nonhuman apes. The lordotic angles of australopithecines (41° ± 4), H. erectus (45°) and fossil H. sapiens (54° ± 14) are similar to those of modern humans (51° ± 11). This analysis confirms the assumption that human-like lordotic curvature was a morphological change that took place during the acquisition of erect posture and bipedalism as the habitual form of locomotion. Neandertals have smaller lordotic angles (LA = 29° ± 4) than modern humans, but higher angles than nonhuman apes (22° ± 3). This suggests possible subtle differences in Neandertal posture and locomotion from that of modern humans.  相似文献   

15.
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Humans, unlike African apes, have relatively robust fifth metatarsals (Mt5) presumably reflecting substantial weight-bearing and stability function in the lateral column of the former. When this morphological difference emerged during hominin evolution is debated. Here we investigate internal diaphyseal structure of Mt5s attributed to Australopithecus (from Sterkfontein), Paranthropus (from Swartkrans), and Homo (from Olduvai, Dmanisi, and Dinaledi) placed in the context of human and African ape Mt5 internal diaphyseal structure. ‘Whole-shaft’ properties were evaluated from 17 cross sections sampling 25% to 75% diaphyseal length using computed tomography. To assess structural patterns, scaled cortical bone thicknesses (sCBT) and scaled second moments of area (sSMA) were visualized and evaluated through penalized discriminant analyses. While the majority of fossil hominin Mt5s exhibited ape-like sCBT, their sSMA were comparatively more human-like. Human-like functional loading of the lateral column existed in at least some fossil hominins, although perhaps surprisingly not in hominins from Dmanisi or Dinaledi.  相似文献   

17.
We investigated the energetic costs of quadrupedal and bipedal walking in two Japanese macaques. The subjects were engaged in traditional bipedal performance for years, and are extremely adept bipeds. The experiment was conducted in an airtight chamber with a gas analyzer. The subjects walked quadrupedally and bipedally at fixed velocities (<5 km/hr) on a treadmill in the chamber for 2.5-6 min. We estimated energy consumption from carbon dioxide (CO2) production. While walking bipedally, energetic expenditure increased by 30% relative to quadrupedalism in one subject, and by 20% in another younger subject. Energetic costs increased linearly with velocity in quadrupedalism and bipedalism, with bipedal/quadrupedal ratios remaining almost constant. Our experiments were relatively short in duration, and thus the observed locomotor costs may include presteady-state high values. However, there was no difference in experimental duration between bipedal and quadrupedal trials. Thus, the issue of steady state cannot cancel the difference in energetic costs. Furthermore, we observed that switching of locomotor mode (quadrupedalism to bipedalism) during a session resulted in a significant increase of CO2 production. Taylor and Rowntree ([1973] Science 179:186-187) noted that the energetic costs for bipedal and quadrupedal walking were the same in chimpanzees and capuchin monkeys. Although the reason for this inconsistency is not clear, species-specific differences should be considered regarding bipedal locomotor energetics among nonhuman primates. Extra costs for bipedalism may not be great in these macaques. Indeed, it is known that suspensory locomotion in Ateles consumes 1.3-1.4 times as much energy relative to quadrupedal progression. This excess ratio surpasses the bipedal/quadrupedal energetic ratios in these macaques.  相似文献   

18.
In addition to evidence for bipedality in some fossil taxa, molar enamel thickness is among the few characters distinguishing (thick-enameled) hominins from the (thin-enameled) African apes. Despite the importance of enamel thickness in taxonomic discussions and a long history of scholarship, measurements of enamel thickness are performed almost exclusively on molars, with relatively few studies examining premolars and anterior teeth. This focus on molars has limited the scope of enamel thickness studies (i.e., there exist many fossil hominin incisors, canines, and premolars). Increasing the available sample of teeth from which to compare enamel thickness measurements from the fossil record could substantially increase our understanding of this aspect of dental biology, and perhaps facilitate greater taxonomic resolution of early hominin fossils. In this study, we report absolute and relative (size-scaled) enamel thickness measurements for the complete dentition of modern humans and chimpanzees. In accord with previous studies of molars, chimpanzees show lower relative enamel thickness at each tooth position, with little overlap between the two taxa. A significant trend of increasing enamel thickness from anterior to posterior teeth is apparent in both humans and chimpanzees, indicating that inter-taxon comparisons should be limited to the same tooth position in order to compare homologous structures. As nondestructive imaging techniques become commonplace (facilitating the examination of increasing numbers of fossil specimens), studies may maximize available samples by expanding beyond molars.  相似文献   

19.
Although the earliest known hominins were apparently upright bipeds, there has been mixed evidence whether particular species of hominins including those in the genus Australopithecus walked with relatively extended hips, knees and ankles like modern humans, or with more flexed lower limb joints like apes when bipedal. Here we demonstrate in chimpanzees and humans a highly predictable and sensitive relationship between the orientation of the ankle joint during loading and the principal orientation of trabecular bone struts in the distal tibia that function to withstand compressive forces within the joint. Analyses of the orientation of these struts using microCT scans in a sample of fossil tibiae from the site of Sterkfontein, of which two are assigned to Australopithecus africanus, indicate that these hominins primarily loaded their ankles in a relatively extended posture like modern humans and unlike chimpanzees. In other respects, however, trabecular properties in Au africanus are distinctive, with values that mostly fall between those of chimpanzees and humans. These results indicate that Au. africanus, like Homo, walked with an efficient, extended lower limb.  相似文献   

20.
Field observations of bipedal posture and locomotion in wild chimpanzees (Pan troglodytes) can serve as key evidence for reconstructing the likely origins of bipedalism in the last prehominid human ancestor. This paper reports on a sample of bipedal bouts, recorded ad libitum, in wild chimpanzees in Bwindi Impenetrable National Park in southwestern Uganda. The Ruhija community of chimpanzees in Bwindi displays a high rate of bipedal posture. In 246.7 hr of observation from 2001-2003, 179 instances of bipedal posture lasting 5 sec or longer were recorded, for a rate of 0.73 bouts per observation hour. Bipedalism was observed only on arboreal substrates, and was almost all postural, and not locomotor. Bipedalism was part of a complex series of positional behaviors related to feeding, which included two-legged standing, one-legged standing with arm support, and other intermediate postures. Ninety-six percent of bipedal bouts occurred in a foraging context, always as a chimpanzee reached to pluck fruit from tree limbs. Bipedalism was seen in both male and female adults, less frequently among juveniles, and rarely in infants. Both the frequency and duration of bipedal bouts showed a significant positive correlation with estimated substrate diameter. Neither fruit size nor nearest-neighbor association patterns were significantly correlated with the occurrence of bipedalism. Bipedalism is seen frequently in the Bwindi chimpanzee community, in part because of the unusual observer conditions at Bwindi. Most observations of bipedalism were made when the animals were in treetops and the observer at eye-level across narrow ravines. This suggests that wild chimpanzees may engage in bipedal behavior more often than is generally appreciated. Models of the likely evolutionary origins of bipedalism are considered in the light of Bwindi bipedalism data. Bipedalism among Bwindi chimpanzees suggests the origin of bipedal posture in hominids to be related to foraging advantages in fruit trees. It suggests important arboreal advantages in upright posture. The origin of postural bipedalism may have preceded and been causally disconnected from locomotor bipedalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号