首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.  相似文献   

2.
3.
Mathematical modeling is now frequently used in outbreak investigations to understand underlying mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of epidemics. However, the successful application of mathematical models to guide public health interventions lies in the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a simple computational method for assessing parameter identifiability in compartmental epidemic models. We describe a parametric bootstrap approach to generate simulated data from dynamical systems to quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin with a low-complexity SEIR model and work through examples of increasingly more complex compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika. Overall, parameter identifiability issues are more likely to arise with more complex models (based on number of equations/states and parameters). As the number of parameters being jointly estimated increases, the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in most cases, R0 is often robust to parameter identifiability issues affecting individual parameters in the model. Despite large confidence intervals and higher mean squared error of other individual model parameters, R0 can still be estimated with precision and accuracy. Because public health policies can be influenced by results of mathematical modeling studies, it is important to conduct parameter identifiability analyses prior to fitting the models to available data and to report parameter estimates with quantified uncertainty. The method described is helpful in these regards and enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.  相似文献   

4.
A fundamental issue in understanding homeostasis of the hematopoietic system is to what extent intrinsic and extrinsic factors regulate cell fate. We recently revisited this issue for the case of blood platelets and concluded that platelet life span is largely regulated by internal factors, in contrast to the long-held view that accumulated damage from the environment triggers clearance. However, it is known that in humans there is an ongoing fixed requirement for platelets to maintain hemostasis and prevent bleeding; hence a proportion of platelets may be consumed in such processes before the end of their natural life span. Whether it is possible to detect this random loss of platelets in normal individuals at steady-state is unknown. To address this question, we have developed a mathematical model that independently incorporates age-independent random loss and age-dependent natural senescent clearance. By fitting to population survival curves, we illustrate the application of the model in quantifying the fixed requirement for platelets to maintain hemostasis in mice, and discuss the relationship with previous work in humans. Our results suggest a higher requirement for platelets in mice than in humans, however experimental uncertainty in the data limits our ability to constrain this quantity. We then explored the relationship between experimental uncertainty and parameter constraint using simulated data. We conclude that in order to provide useful constraint on the random loss fraction the standard error in the mean of the data must be reduced substantially, either through improving experimental uncertainty or increasing the number of experimental replicates to impractical levels. Finally we find that parameter constraint is improved at higher values of the random loss fraction; thus the model find utility in situations where the random loss fraction is expected to be high, for example during active bleeding or some types of thrombocytopenia.  相似文献   

5.
6.
Background: In systems biology, the dynamics of biological networks are often modeled with ordinary differential equations (ODEs) that encode interacting components in the systems, resulting in highly complex models. In contrast, the amount of experimentally available data is almost always limited, and insufficient to constrain the parameters. In this situation, parameter estimation is a very challenging problem. To address this challenge, two intuitive approaches are to perform experimental design to generate more data, and to perform model reduction to simplify the model. Experimental design and model reduction have been traditionally viewed as two distinct areas, and an extensive literature and excellent reviews exist on each of the two areas. Intriguingly, however, the intrinsic connections between the two areas have not been recognized.Results: Experimental design and model reduction are deeply related, and can be considered as one unified framework. There are two recent methods that can tackle both areas, one based on model manifold and the other based on profile likelihood. We use a simple sum-of-two-exponentials example to discuss the concepts and algorithmic details of both methods, and provide Matlab-based code and implementation which are useful resources for the dissemination and adoption of experimental design and model reduction in the biology community.Conclusions: From a geometric perspective, we consider the experimental data as a point in a high-dimensional data space and the mathematical model as a manifold living in this space. Parameter estimation can be viewed as a projection of the data point onto the manifold. By examining the singularity around the projected point on the manifold, we can perform both experimental design and model reduction. Experimental design identifies new experiments that expand the manifold and remove the singularity, whereas model reduction identifies the nearest boundary, which is the nearest singularity that suggests an appropriate form of a reduced model. This geometric interpretation represents one step toward the convergence of experimental design and model reduction as a unified framework.  相似文献   

7.
Population variability and uncertainty are important features of biological systems that must be considered when developing mathematical models for these systems. In this paper we present probability-based parameter estimation methods that account for such variability and uncertainty. Theoretical results that establish well-posedness and stability for these methods are discussed. A probabilistic parameter estimation technique is then applied to a toxicokinetic model for trichloroethylene using several types of simulated data. Comparison with results obtained using a standard, deterministic parameter estimation method suggests that the probabilistic methods are better able to capture population variability and uncertainty in model parameters.  相似文献   

8.
To facilitate analysis and understanding of biological systems, large-scale data are often integrated into models using a variety of mathematical and computational approaches. Such models describe the dynamics of the biological system and can be used to study the changes in the state of the system over time. For many model classes, such as discrete or continuous dynamical systems, there exist appropriate frameworks and tools for analyzing system dynamics. However, the heterogeneous information that encodes and bridges molecular and cellular dynamics, inherent to fine-grained molecular simulation models, presents significant challenges to the study of system dynamics. In this paper, we present an algorithmic information theory based approach for the analysis and interpretation of the dynamics of such executable models of biological systems. We apply a normalized compression distance (NCD) analysis to the state representations of a model that simulates the immune decision making and immune cell behavior. We show that this analysis successfully captures the essential information in the dynamics of the system, which results from a variety of events including proliferation, differentiation, or perturbations such as gene knock-outs. We demonstrate that this approach can be used for the analysis of executable models, regardless of the modeling framework, and for making experimentally quantifiable predictions.  相似文献   

9.
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.  相似文献   

10.
11.
During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors.  相似文献   

12.
The role of the host immune response in determining the severity and duration of an influenza infection is still unclear. In order to identify severity factors and more accurately predict the course of an influenza infection within a human host, an understanding of the impact of host factors on the infection process is required. Despite the lack of sufficiently diverse experimental data describing the time course of the various immune response components, published mathematical models were constructed from limited human or animal data using various strategies and simplifying assumptions. To assess the validity of these models, we assemble previously published experimental data of the dynamics and role of cytotoxic T lymphocytes, antibodies, and interferon and determined qualitative key features of their effect that should be captured by mathematical models. We test these existing models by confronting them with experimental data and find that no single model agrees completely with the variety of influenza viral kinetics responses observed experimentally when various immune response components are suppressed. Our analysis highlights the strong and weak points of each mathematical model and highlights areas where additional experimental data could elucidate specific mechanisms, constrain model design, and complete our understanding of the immune response to influenza.  相似文献   

13.
This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.  相似文献   

14.
Chimeric antigen receptor (CAR) T-cell therapy is potentially an effective targeted immunotherapy for glioblastoma, yet there is presently little known about the efficacy of CAR T-cell treatment when combined with the widely used anti-inflammatory and immunosuppressant glucocorticoid, dexamethasone. Here we present a mathematical model-based analysis of three patient-derived glioblastoma cell lines treated in vitro with CAR T-cells and dexamethasone. Advanced in vitro experimental cell killing assay technologies allow for highly resolved temporal dynamics of tumor cells treated with CAR T-cells and dexamethasone, making this a valuable model system for studying the rich dynamics of nonlinear biological processes with translational applications. We model the system as a nonautonomous, two-species predator-prey interaction of tumor cells and CAR T-cells, with explicit time-dependence in the clearance rate of dexamethasone. Using time as a bifurcation parameter, we show that (1) dexamethasone destabilizes coexistence equilibria between CAR T-cells and tumor cells in a dose-dependent manner and (2) as dexamethasone is cleared from the system, a stable coexistence equilibrium returns in the form of a Hopf bifurcation. With the model fit to experimental data, we demonstrate that high concentrations of dexamethasone antagonizes CAR T-cell efficacy by exhausting, or reducing the activity of CAR T-cells, and by promoting tumor cell growth. Finally, we identify a critical threshold in the ratio of CAR T-cell death to CAR T-cell proliferation rates that predicts eventual treatment success or failure that may be used to guide the dose and timing of CAR T-cell therapy in the presence of dexamethasone in patients.  相似文献   

15.
16.
A mathematical model is presented for the emergence of perceptual-cognitive-behavioral modes in psychophysical experiments in which participants are confronted with two alternatives. The model is based on the theory of self-organization and, in particular, the order parameter concept such that the emergence of a mode is conceptualized as an instability leading to the emergence of an appropriately defined order parameter. The order parameter model is merged with a second model that describes adaptation in terms of a system parameter dynamics. It is shown that the two-component model predicts hysteretic mode-mode transitions when control parameters are increased or decreased beyond critical values. The two-component model can account for both positive and negative hysteresis effects due to the interaction between order parameter and system parameter dynamics. Moreover, the model-based analysis reveals that response time curves look rather flat when response times are relatively decoupled from the mode-mode transition phenomenon. In general, response time curves exhibit a peaked close to the mode-mode transition point. In this context, the possibility is discussed that such peaked response time curves belong to the class of critical phenomena of self-organizing systems. In order to illustrate the relevance of peaked response time curves for future research and research reported in the past, results from a perceptual judgment experiment are reported, in which participants judged their ability to stand on a tilted slope for various angles of inclination. Response time curves were found that exhibited a peak around the mode-mode-transition points between “yes” and “no” responses.  相似文献   

17.
18.

Background

The dynamics of biochemical networks can be modelled by systems of ordinary differential equations. However, these networks are typically large and contain many parameters. Therefore model reduction procedures, such as lumping, sensitivity analysis and time-scale separation, are used to simplify models. Although there are many different model reduction procedures, the evaluation of reduced models is difficult and depends on the parameter values of the full model. There is a lack of a criteria for evaluating reduced models when the model parameters are uncertain.

Results

We developed a method to compare reduced models and select the model that results in similar dynamics and uncertainty as the original model. We simulated different parameter sets from the assumed parameter distributions. Then, we compared all reduced models for all parameter sets using cluster analysis. The clusters revealed which of the reduced models that were similar to the original model in dynamics and variability. This allowed us to select the smallest reduced model that best approximated the full model. Through examples we showed that when parameter uncertainty was large, the model should be reduced further and when parameter uncertainty was small, models should not be reduced much.

Conclusions

A method to compare different models under parameter uncertainty is developed. It can be applied to any model reduction method. We also showed that the amount of parameter uncertainty influences the choice of reduced models.
  相似文献   

19.
Bacterial biofilms are complex microbial depositions on immersed interfaces that form wherever the environmental conditions sustain microbial growth. Despite their name, biofilms can develop in highly irregular structures. Recently several mathematical concepts have been introduced to model these spatially structured microbial populations. Regardless of the type of model, they all have, even for microbially relatively simple systems, many parameters which generally are known at most approximately. We investigate the effect of uncertainties in model parameters on four morphological and four ecological output parameters using a nonlinear diffusion model for a biofilm in which two species compete for a shared nutrient. To this end we conduct an extensive computer simulation experiment for two different levels of data uncertainty, three different hydrodynamic conditions, and two different scenarios of bulk substrate availability. Our results indicate that input model parameter uncertainties have a much larger effect on ecological than on morphological output parameters.  相似文献   

20.
A framework for the online optimization of protein induction using green fluorescent protein (GFP)-monitoring technology was developed for high-cell-density cultivation of Escherichia coli. A simple and unstructured mathematical model was developed that described well the dynamics of cloned chloramphenicol acetyltransferase (CAT) production in E. coli JM105 was developed. A sequential quadratic programming (SQP) optimization algorithm was used to estimate model parameter values and to solve optimal open-loop control problems for piecewise control of inducer feed rates that maximize productivity. The optimal inducer feeding profile for an arabinose induction system was different from that of an isopropyl-beta-D-thiogalactopyranoside (IPTG) induction system. Also, model-based online parameter estimation and online optimization algorithms were developed to determine optimal inducer feeding rates for eventual use of a feedback signal from a GFP fluorescence probe (direct product monitoring with 95-minute time delay). Because the numerical algorithms required minimal processing time, the potential for product-based and model-based online optimal control methodology can be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号