首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors linked with intraspecific variation in trophic diversity are still poorly understood in generalist species like the Montagu’s harrier (Circus pygargus) but may have important implications for conservation management at a wide scale. We described geographic patterns of Montagu’s harrier diet across Eurasia, gathering diet data from 30 studies in 41 areas from 11 countries. We grouped prey as invertebrates, reptiles, small mammals, large mammals, eggs, small birds and large birds, and calculated the contribution of each prey type to the diet (as % biomass) and Shannon’s Diversity Index for each study site. We analysed qualitative estimates of prey abundance in relation to latitude and longitude, then diet composition in relation to habitat of the study area and prey abundance estimates. Diet diversity of Montagu’s harriers increased from north to south, while abundance of all prey groups other than small mammals showed the opposite trends. Agricultural areas in northern latitudes seemed to hold high densities of small mammals, but low densities of alternative prey. Overall, birds were the main prey in most of Montagu’s harrier’s distribution range, although the relative importance of each prey type in the diet was significantly explained by its local abundance and habitat, confirming the opportunistic foraging strategy of this raptor species. Consumption of mammals was an exception to this trend, being negatively associated with the abundance of alternative prey, suggesting that this prey is not preferred. Trophic diversity in this species could be influenced by land-use changes through variations in the abundance and availability of prey, which could impact its population dynamics. This may be particularly important for northern populations of Montagu’s harriers breeding in agricultural habitats, where trophic diversity is already low.  相似文献   

2.
The assumption that large mammal hunting and scavenging are economically advantageous to hominid foragers is examined in the light of data collected among the Hadza of northern Tanzania. Hadza hunters disregard small prey in favour of larger forms (mean adult mass greater than or equal to 40 kg). Here we report experimental data showing that hunters would reduce their mean rates if they included small animals in the array they target. Still, daily variance in large animal hunting returns is high, and the risk of failure correspondingly great, significantly greater than that associated with small game hunting and trapping. Sharing large kills reduces the risk of meatless days for big game hunters, and obviates the problem of storing large amounts of meat. It may be unavoidable if large carcasses cannot be defended economically against the demands of other consumers. If so, then large prey are common goods. A hunter may gain no consumption advantage from his own big game acquisition efforts. We use Hadza data to model this 'collective action' problem, and find that an exclusive focus on large game with extensive sharing is not the optimal strategy for hunters concerned with maximizing their own chances of eating meat. Other explanations for the emergence and persistence of this practice must be considered.  相似文献   

3.
The regional synchrony of short-term population fluctuations of small rodents and small game has usually been explained by varying impacts of generalist predators subsisting on both voles and small game (the "alternative prey hypothesis" APH). APH says that densities of predators increase as a response to increasing vole densities and then these predators shift their diet from the main prey to the alternative prey when the main prey decline and vice versa. We studied the diet composition of breeding common buzzards Buteo buteo during 1985-92 in western Finland. Microtus voles were the main prey and water voles, shrews, forest grouse, hares and small birds the most important alternative prey. Our data from the between-year variation in the diet composition of buzzards fulfilled the main predictions of APH. The yearly proportion of main prey (Microtus voles) in the diet was higher in years of high than low vole abundance. The proportion of grouse in the diet of buzzards was negatively related to the abundance of Microtus voles in the field and was nearly independent of grouse abundance in the field. In addition, buzzards mainly took grouse chicks and young hares which is consistent with the prediction of APH. Therefore, we conclude that buzzards are able to shift their diet in the way predicted by the APH and that buzzards, together with other generalist predators, may reduce the breeding success of small game in the decline phase of the vole cycle, and thus substantially contribute to the existence of short-term population cycles of small game.  相似文献   

4.
The issue of predator limitation of vertebrate prey populations is contentious, particularly when it involves species of economic or conservation value. In this paper, we examine the case of raptor predation on upland passerines and waders in Scotland. We analysed the abundance of five wader and passerine species on an upland sporting estate in southern Scotland during an eight-year period when hen harrier, peregrine and merlin numbers increased due to strict law enforcement. The abundance of meadow pipit and skylark declined significantly during this time. Golden plover also showed a declining trend, whereas curlew increased significantly and there was a near significant increase in lapwings. Contrasting the local population trends of these species with trends on nearby areas revealed higher rates of decline for meadow pipit and skylark at the site where raptors increased, but no differences in trends for any of the three wader species. There was a negative relationship between the number of breeding harriers and meadow pipit abundance the same year and between total annual raptor numbers and meadow pipit abundance. Predation rates of meadow pipit and skylark determined from observations at harrier nests suggested that predation in June was sufficient to remove up to 40% of the June meadow pipit population and up to 34% of the June skylark population. This 'quasi-natural' experiment suggests that harrier predation limited the abundance of their main prey, meadow pipit, and possibly the abundance of skylark. Thus, high densities of harriers may in theory reduce the abundance of the prey species which determine their breeding densities, potentially leading to lower harrier breeding densities in subsequent years. We found no evidence to suggest that raptor predation limited the populations of any of the three wader species. We infer that concerns over the impact of natural densities of hen harriers on vulnerable upland waders are unjustified.  相似文献   

5.
Big game populations are being raised in areas characterized by different land uses and are being managed under a wide range of circumstances which might influence their population densities and structure. However, the consideration of explanatory variables related to management activities is not generally explicitly considered in game population models. This paper focuses on how estate owners’ management objectives and strategies influence red deer (Cervus elaphus L.) hunting yields. We study red deer harvest in 187 hunting estates in Andalusia (Spain) and use both ecological and management predictors to describe capture levels in each hunting estate. We have found that the main land use of the area where red deer are being raised, the type of hunting holder, and the long-term management strategies (such as fencing and the hunting practices implemented) significantly explain red deer hunting bag, which is often used as proxy of population abundance. Therefore, ecological variables alone are not always sufficient to determine big game harvests. We provide empirical support that reinforces the relevance of considering humans and their long-term decisions when trying to interpret wildlife harvests, populations, and trends. We urge scientists and technicians to incorporate human aims in the game species distribution models and resource user decision models, particularly when game populations are being intensively managed.  相似文献   

6.
In habitats where prey is either rare or difficult to predict spatiotemporally, such as open habitats, predators must be adapted to react effectively to variations in prey abundance. Open-habitat foraging bats have a wing morphology adapted for covering long distances, possibly use information transfer to locate patches of high prey abundance, and would therefore be expected to show an aggregative response at these patches. Here, we examined the effects of prey abundance on foraging activities of open-habitat foragers in comparison to that of edge-habitat foragers and closed-habitat foragers. Bat activity was estimated by counting foraging calls recorded with bat call recorders (38,371 calls). Prey abundance was estimated concurrently at each site using light and pitfall traps. The habitat was characterized by terrestrial laser scanning. Prey abundance increased with vegetation density. As expected, recordings of open-habitat foragers clearly decreased with increasing vegetation density. The foraging activity of edge- and closed-habitat foragers was not significantly affected by the vegetation density, i.e., these guilds were able to forage from open habitats to habitats with dense vegetation. Only open-habitat foragers displayed a significant and proportional aggregative response to increasing prey abundance. Our results suggest that adaptations for effective and low-cost foraging constrains habitat use and excludes the guild of open-habitat foragers from foraging in habitats with high prey abundance, such as dense forest stands.  相似文献   

7.
Understanding relationships between environmental conditions and reproductive parameters is important when interpreting variation in animal population size. The northwestern North American population of Golden Eagles Aquila chrysaetos canadensis initiates courtship and nesting in early spring when prey diversity is low and weather conditions are severe. Snowshoe Hare Lepus americanus and Willow Ptarmigan Lagopus lagopus, the primary prey of Golden Eagles early in their nesting season in interior Alaska, both exhibit cyclical fluctuations in abundance, providing the opportunity to investigate such relationships. We used Bayesian hierarchical models to explore variation in territory occupancy, nesting rates, nesting success and productivity of Golden Eagles from 1988 to 2010 in Denali National Park and Preserve, Alaska, in relation to annual and site‐specific parameters including prey abundance, weather conditions, elevation and human activity. We also investigated the long‐term fluctuations of breeding performance over the course of the study. The abundance of Hares influenced both the number of Eagles that laid eggs and the number of Eagles that produced fledglings. The conditions on the breeding ground did not explain observed declines in nesting rates and fledgling production, suggesting that other factors such as change in the age structure of the population, increased intraspecific competition or deterioration of migration and wintering habitat are driving the long‐term trends of these parameters.  相似文献   

8.
Unique to South-east Asia, Lao People's Democratic Republic contains extensive habitat for tigers and their prey within a multiple-use protected area system covering 13% of the country. Although human population density is the lowest in the region, the impact of human occurrence in protected areas on tiger Panthera tigris and prey populations was unknown. We examined the effects of human–carnivore conflict on tiger and prey abundance and distribution in the Nam Et-Phou Louey National Protected Area on the Lao–Vietnam border. We conducted intensive camera-trap sampling of large carnivores and prey at varying levels of human population and monitored carnivore depredation of livestock across the protected area. The relative abundance of large ungulates was low throughout whereas that of small prey was significantly higher where human density was lower. The estimated tiger density for the sample area ranged from 0.2 to 0.7 per 100 km2. Tiger abundance was significantly lower where human population and disturbance were greater. Three factors, commercial poaching associated with livestock grazing followed by prey depletion and competition between large carnivores, are likely responsible for tiger abundance and distribution. Maintaining tigers in the country's protected areas will be dependent on the spatial separation of large carnivores and humans by modifying livestock husbandry practices and enforcing zoning.  相似文献   

9.
Population dynamics of small mammals and predators in semi-arid Chile is positively correlated with rainfall associated with incursions of El Niño (El Niño Southern Oscillation: ENSO). However, the causal relationships between small mammal fluctuations, predator oscillations, and climatic disturbances are poorly understood. Here, we report time series models for three species of small mammal prey and two species of owl predators. The large differences in population fluctuations between the three small mammal species are related to differences in their respective feedback structures. The analyses reveal that per capita growth rate of the leaf-eared mouse is a decreasing function of log density and of log barn owl abundance together with a positive rainfall effect. In turn, per capita population growth rate ( R -function) of the barn owl is a negative function of log barn owl abundance and a positive function of leaf-eared mouse abundance, suggesting a predator–prey interaction. The dramatic population fluctuations exhibited by leaf-eared mouse ( Phyllotis darwini ) are caused by climate effects coupled with a complex food web architecture.  相似文献   

10.
North American invasions of the predatory cladoceran Bythotrephes longimanus have resulted in declines in native zooplankton abundance, species richness, and diversity. In the field, population maxima of Bythotrephes are positively correlated to those of their zooplankton prey. To test the hypothesis that increased prey availability enhances Bythotrephes fitness, we reared Bythotrephes in the laboratory on three mixed-species prey densities (equivalent to 15, 30, and 45 prey organisms day?1; designated “low,” “medium,” and “high” food treatments, respectively) over 22 days at 21°C. Bythotrephes consumed the daily equivalent of 9, 14, and 22 prey organisms at the low, medium, and high food densities. Smaller, slower prey were most often selected. Indeed, with increasing prey density, Bythotrephes’ predation rates increased, resulting in significantly higher population growth rates, net reproductive rates, growth, and first brood clutch and offspring sizes; significantly faster generation times; and shorter maximum life spans. We propose that the positive relationship between Bythotrephes population maxima and prey seen in the field is largely due to increased predation rates by Bythotrephes when prey abundance is high and the fitness benefits that ensue. Our findings may be useful for Bythotrephes risk and impact assessments.  相似文献   

11.
The interaction between hunting interests and legally protected predators is often a contentious conservation problem, requiring detailed understanding of predator responses to game management. This issue was addressed in southern Portugal in a treatment-control natural experiment, whereby the abundances of small game, corvids, birds of prey and carnivores were compared in 12 game estates (>500 ha) and 12 matching areas with similar sizes and land uses but no game management. European rabbits (Oryctolagus cuniculus), Iberian hares (Lepus granatensis) and, less so, red-legged partridges (Alectoris rufa) were far more numerous in game estates than elsewhere. Among legally controlled species, there were less Eurasian jays (Garrulus glandarius) but more red foxes (Vulpes vulpes) in game estates, though the latter were primary targets of predator culling. Fox abundance within game estates varied inversely with an index of management intensity (density of small game feeding sites) and increased along with hare abundance. As for protected species, only common kestrels (Falco tinnunculus) and genets (Genetta genetta) were fewer in game estates. The abundance of raptors within game estates varied inversely with gamekeeper density, whereas that of common buzzards (Buteo buteo) increased along with rabbit abundance. Overall, there was little evidence that game management reduced local predator abundances, except in the most intensively managed estates. Game estates provided concentrations of prey that was scarce elsewhere, which may have favoured increased abundances of some predators. Further investigations are needed to find out whether high prey densities may attract predators to game estates with increased mortality risk, which may thus become population sinks for protected species.  相似文献   

12.
Abstract: This paper illustrates how age-at-harvest data, when combined with hunter-effort information routinely collected by state game management agencies, can be used to estimate and monitor trends in big game abundance. Twenty-four years of age-at-harvest data for black-tailed deer (Odocoileus hemionus) were analyzed to produce abundance estimates ranging from 1,281 adult females to 3,232 adult females on a 22,079-ha tree farm in Pierce County, Washington, USA. The annual natural survival probability was estimated to be 0.7293 ( = 0.0097) for this female population. The estimated abundance was highly correlated with an independent browse damage index (r = 0.8131, P < 0.001). A population reconstruction incorporating the browse index did not substantially improve the model fit but did provide an auxiliary model for predicting deer abundance. This population reconstruction illustrates a cost-effective alternative to expensive big game survey methods.  相似文献   

13.
Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus) (CSL) whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki) (GSL) whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers) during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in contrasting population trends in which CSL are more successful and potentially more resilient to climate change.  相似文献   

14.
Predation has been invoked as a factor synchronizing the population oscillations of sympatric prey species, either because predators kill prey unselectively (the Shared Predation Hypothesis; hereafter SPH), or because predators switch to alternative prey after a density decline in their main prey (the Alternative Prey Hypothesis; APH). A basic assumption of the APH is that the impact of predators on alternative prey depends more on the density of main prey than on the predator/alternative prey ratio. Both SPH and APH assume that the impact of predators on alternative prey is at least periodically strong enough to depress prey populations. To examine these assumptions, we utilized data from replicated field experiments in large areas where we reduced the breeding densities of avian predators during three years and the numbers of least weasels (Mustela nivalis) in two years when vole populations declined. In addition, we reduced the breeding densities of avian predators in two years when vole populations were high. The reduction of least weasels increased the abundance of their alternative prey, small birds breeding on the ground, but did not affect the abundance of common shrews (Sorex araneus). In years when vole populations declined, the reduction of avian predators increased the abundance of their alternative prey, common shrews and small birds. Therefore, vole‐eating predators do at least periodically depress the abundance of their alternative prey. At high vole densities, the reduction of avian predators did not increase the abundance of common shrews, although the ratio of avian predators to alternative prey was similar to years when vole populations declined, which supported APH. In contrast, the abundance of small birds increased after the reduction of avian predators also at high vole densities, which supported SPH. The manipulations had no obvious effect on the number of game birds, which are only occasionally killed by these small‐sized predators. We conclude that in communities where most predators are small or specialize on a single prey type, the synchronizing impact of predation is restricted to a few similar‐sized species.  相似文献   

15.
We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator–prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator–prey system relevant to biological control problems.  相似文献   

16.
The consequences of cyclic fluctuations in abundance of prey species on predator continue to improve our understanding of the mechanisms behind population regulation. Among predators, vole‐eating raptors usually respond to changes in prey abundance with no apparent time‐lag and therefore contradict predictions from the predator–prey theory. In such systems, the interplay between demographic traits and population growth rate in relation to prey abundance remains poorly studied, yet it is crucial to characterize the link between ecological processes and population changes. Using a mechanistic approach, we assessed the demographic rates associated to the direct and indirect numerical responses of a specialist raptor (Montagu's harrier) to its cyclic prey (common vole), using long term data from two adjacent study sites in France. First‐year survival rates were weakly affected by vole abundance, probably due to the fact that Montagu's harriers are trans‐Saharan migrants and thus escape the vole collapse occurring in autumn–winter. Recruitment of yearling as well as breeding propensity of experienced adult females were strongly affected by vole abundance and at least partially shaped the trajectory of the breeding population. We argued that the strong density dependent signal detected in predator time series was mostly the phenomenological consequence of the positive direct numerical response of harriers to vole abundance. Accounting for this, we proposed a method to assess density dependence in predator relying on a cyclic prey. Finally, the variation in Montagu's harrier population growth rates was best explained by overwinter growth rates of the prey population and to a lesser extent by previous residual predator density.  相似文献   

17.
Little is known about the dynamics of small mammals in tropical savanna: a critical gap in our understanding of Africa's best known ecosystems. Historical evidence suggested small mammals peak in abundance (outbreak) in Serengeti National Park (SNP), as in agricultural systems. We asked 1) what are bottom–up drivers of small mammals and 2) do predators have top–down effects? We documented dynamics of small mammals, birds of prey, and mammalian carnivores in SNP and agricultural areas. We used climatic fluctuations and differences between unmodified and agricultural systems as perturbations to examine trophic processes, key to understanding responses to climate change and increasing human pressures. Data were derived from intermittent measures of abundance collected 1968–1999, combined with systematic sampling 2000–2010 to construct a 42‐year time series. Data on abundance of black‐shouldered kites (1968–2010), eight other species of rodent‐eating birds (1997–2010), and 10 carnivore species (1993–2010) were also collated. Outbreaks occurred every 3–5 years in SNP, with low or zero abundance between peaks. There was a positive relationship between rainfall in the wet season and 1) small mammal abundance and 2) the probability of an outbreak, both of which increased with negative Southern Oscillation Index values. Rodent‐eating birds and carnivores peaked 6–12 months after small mammals. In agricultural areas, abundance remained higher than in natural habitats. Abundances of birds of prey and mammalian carnivores were extremely low in these areas and not related to small mammal abundance. Small mammals are an important food resource for higher trophic levels in the Serengeti ecosystem. Changes in climate and land use may alter their future dynamics, with cascading consequences for higher trophic levels, including threatened carnivores. Although outbreaks cause substantial damage to crops in agricultural areas, small mammals also play a vital role in maintaining some of the diversity and complexity found in African savanna ecosystems.  相似文献   

18.
There is growing support for the general notion that the drivers of invasion success often shift from biotic to abiotic factors with increasing spatial scale. Most of this research, however, has been conducted on a single trophic level; i.e. it has primarily looked at how the diversity of native competitors may influence invasion success. Less attention has been paid to understanding how native prey diversity may influence the invasion success of exotic predators and whether such biotic factors are scale-dependent. We used a hierarchical spatial survey of 17 stream communities to test whether native prey diversity, along with native prey biomass, algal resource abundance and annual stream discharge, influenced the abundance of an exotic crayfish predator, and whether the importance of these factors were scale-dependent. We used a hierarchical generalized linear model to evaluate the influence of these community and stream characteristics on exotic crayfish abundance at both the transect scale (1 m2) and the stream scale (400 m2). Our results indicated that at the stream scale, high stream discharge significantly limited invader abundance. However, at the smaller transect scale, native prey biomass was a significant driver of invasion success and positively correlated with invader abundance. We suggest that our results add to the emerging pattern that abiotic processes are stronger determinants of invasion success at large spatial scales, whereas biotic processes become more important with decreasing spatial scale. However, for predator invasions, prey biomass, not prey diversity may be a more important for driver of invasion success at small spatial scales.  相似文献   

19.
The conversion of natural ecosystems due to anthropogenic activities has led to the destruction of natural habitats and to the deterioration of habitat quality. Top predators particularly respond sensitively to changes in habitat structures, including the availability of prey. The cheetah Acinonyx jubatus prefers small‐medium‐sized, wild ungulate prey due to the cheetah''s morphological adaptations. However, the majority of the species’ population is found beyond protected areas, where habitat structures, species abundances, and community composition are highly influenced by human activities. Only few studies have analyzed the diet preference of cheetahs in relation to prey availability and abundance for rangelands beyond protected areas in Eastern Africa. The study aimed to determine cheetah prey preference in the rangelands of south‐eastern Kenya based on scat analyses. We compared dietary preference of cheetah with prey availability. For this purpose, we conducted standardized game counts. We analyzed 27 cheetah scat samples collected across the same study area where we also conducted game counts. We found that Grant''s gazelle Gazella granti contributed the highest portion of cheetah''s diet, although Thomson''s gazelle Gazella thomsonii was the most abundant medium‐sized ungulate prey in the study areas. We also recorded two primate species, yellow baboon Papio cynocephalus and vervet monkey Chlorocebus pygerythrus, as well as the rock hyrax Procavia capensis in the cheetah diet. These species have never been documented as cheetah prey before. Furthermore, our results document livestock as potential prey for cheetahs. These observations underline that cheetah use diverse prey in rangelands outside protected areas, and that the abundance of specific prey does not influence cheetah prey preference.  相似文献   

20.
Land conversion for agriculture is an increasing threat to biodiversity conservation, but its ecological effects on African birds is practically unknown. We investigated the impacts of agriculture on the diet and productivity of a small, disjunct population of Mackinder's eagle owls ( Bubo capensis mackinderi  ) in central Kenya. Owl diet was determined by analysis of pellets and other remains and compared to small mammal populations estimated by live trapping in two habitats. Small mammal abundance was low and averaged 7.4 small mammals/ha in farms and 0.5 small mammals/ha in grassland. Owls consumed a wide diversity of prey. The majority were mammals (87%) followed by birds (7%) and insects (5%). The percentage of small mammals in owl diet correlated positively with the relative abundance of small mammals during monthly trapping sessions. Diet composition did not influence owl breeding success. Farming activities affected owl diet composition through crop production. The amount of maize, peas, and carrots growing in farms was correlated with the abundance of Mastomys sp. and Procavia sp. in the owl's diet. Agricultural activities had a large effect on Mackinder's eagle owl diet by increasing the abundance of certain small-mammal prey and attracting owl prey to farms, though farming practices harmful to owls were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号