首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An allochthonous population of spiral-shaped bacteria was found colonizing the surfaces of the colonic mucosa of rats after they had been given magnesium sulphate (MgSO4)-induced diarrhea. These organisms were rarely seen in normal control rats and were not displaced when the treatment was ceased, remaining associated with the tissue for periods of up to 180 days. Similar bacteria were also found when specific pathogen-free rats, lacking mucosa-associated populations, were inoculated with homogenized rat intestine from conventional animals. Light and electron microscopic observations showed that the organisms were attached to the surface of the colon, orientated at right angles to the tissue, with one end inserted into the microvillus border. This is the first report of long-term colonization, following perturbation of the gut ecosystem, of a site on the gastrointestinal mucosa not normally associated with bacteria. The ultrastructure and mode of attachment of these organisms were very similar to that of spiral-shaped bacteria known to associate with the colonic mucosa in monkeys and man.  相似文献   

2.
Ovarian follicles of the stick insect Carausius morosus were analyzed by confocal laser microscopy and immunocytochemistry with a view to studying cell polarity in the follicular epithelium. Such probes as anti-α-tubulin antibodies and Rh-phalloidin were employed to establish how the follicle cell cytoskeleton changes during ovarian development. Data show that α-tubulin prevails over the basal end, while F-actin appears more abundant along the apical end of the follicle cells. This finding was further corroborated by immunogold cytochemistry, showing that label along the basal end is primarily associated with microtubules, while that along the apical end is due to follicle cell microvilli interdigitating with the oocyte plasma membrane. A monoclonal antibody specifically raised against a vitellin polypeptide was used to investigate the role the follicular epithelium might play in relation to vitellogenin (Vg) uptake by the oocyte. Data show that under these conditions label is restricted to the intercellular channels of the follicular epithelium, thus providing further support to the notion that Vg enters the oocyte through the extracellular pathway leading from the basement lamina to the oocyte surface. By contrast, the use of a monoclonal antibody raised against a fat-body-derived protein of 85 kDa that is specifically sulfated within the follicle cells provides evidence for the existence of an alternative way of gaining access to the oocyte surface, that is by transcytosis through the follicular cell epithelium. These findings confirm our earlier observations on stick insect ovarioles whereby polarization in the follicular epithelium is primarily addressed to sustain a transcytotic vesicular traffic between opposite poles of the follicle cell of Vg toward the oocyte surface.  相似文献   

3.
The caecal epithelium of Calicotyle kröyeri consists of a single cell type which functions in the uptake and intracellular digestion of host epidermis and associated mucus. Each cell is columnar with a small basal nucleus and prominent nucleolus. Perinuclear cytoplasm contains narrow profiles of GER and mitochondria with numerous cristae. Golgi complexes are small and indistinct. Most of the cell is filled with vacuoles of heterogeneous content, the largest occupying the cell apex. There is in each cell an apical endocytotic complex comprising cell surface lamellae, apical vesicles and numerous tubular invaginations of the plasmalemma. The limiting membrane of all these components is structurally modified and bears a highly organized array of peg-like structures on its luminal surface. The complex is capable of ingesting particulate food material from the gut lumen for transfer, via vesicles, to the vacuoles for digestion. Most of the vacuoles represent the digestive elements of the cell and, histochemically, are reactive for protein, mucus and carboxylic esterases. Indigestible residues and lipid droplets accumulate in the large apical vacuole and are periodically released to the lumen by exocytosis. Small, undifferentiated caecal cells were occasionally observed in the epithelium, but their development has not been recorded.  相似文献   

4.
Eugregarines represent a diverse group of Apicomplexa parasitising numerous invertebrates. Their sporozoites generally develop into epicellular trophozoites attached to the host epithelium by a specialised attachment organelle known as an epimerite. They are considered peculiar protists due to their unique cell architecture and dimensions as well as their attachment strategy which is similar to that of cryptosporidia. Using electron and fluorescence microscopy, the fine structure of the epimerite with associated structures and the mechanism of trophozoite detachment from the host epithelium were studied in Gregarina polymorpha parasitising the intestine of Tenebrio molitor larvae. The epimerite appears to be a very dynamic structure whose shape dramatically changes depending on whether or not it is embedded into the host epithelium. The trophozoite’s most fragile zone is the area below the membrane fusion site at the epimerite base. The epimerite plasma membrane forms basal radial ribs which are involved in increasing its surface and strengthening the epimerite-host cell junction. FITC-phalloidin labelling demonstrated the presence of filamentous actin in trophozoites along with its accumulation at the epimerite base and in the apical end of the protomerite, as well as a patch accumulation of filamentous actin in the protomerite of maturing and mature trophozoites. Indirect immunofluorescence revealed the presence of myosin in the cortical zone of the epimerite and in the membrane fusion site area. The data obtained strongly suggest that these structures could facilitate the detachment of a mature trophozoite from the host epithelium. Supported by data presented herein and our previous observations, we propose a new hypothesis on the mechanism of trophozoite detachment from the host epithelium based on epimerite retraction into the protomerite. This is contrary to the commonly accepted hypothesis describing gradual epimerite constriction and subsequent separation facilitated by contractility of the membrane fusion site (osmiophilic ring).  相似文献   

5.
The sensory epithelium of the paratypanic organ (Vitali) was studied by means of the electron microscope. Two kinds of cells are present. One type extends from the basement membrane to the surface of the epithelium; their nuclei are arranged close to the connective tissue and are surrounded by a pale cytoplasm. The distal part of these cells, which are denser and richer in organelles, possess microvilli. The cells of the second type are located above the basement membrane and are found between the upper parts of the cells of the first type. Their cytoplasm is rich in small round vesicles, free ribosomes and cisternae of rough endoplasmic reticulum are present especially in the infranuclear zone. The apical part contains a Golgi apparatus lysosomes and multive sicular bodies. At the apex each cell possesses a cuticular plate numerous stereocilia and one kinocilium. The stereocilia become increasingly longer from one side of the cell surface to the other and the kinocilium is situated on the side where the stereocilia are longest. Nervous fibers are present in the epithelium and are in close contact with the cells of the second type. The cells we have described are remarkably similar to the supporting and hair cells of the vestibular sensory epithelium.  相似文献   

6.
Colchicine- and vinblastine-induced depolymerization of microtubules (MTs) in the intestinal epithelium of rats and mice resulted in significant delivery of three apical membrane proteins (alkaline phosphatase, sucrase-isomaltase, and aminopeptidase N) to the basolateral membrane domain. In addition, typical brush borders (BBs) occurred at the basolateral cell surface, consisting of numerous microvilli that contained the four major components of the cytoskeleton of apical microvilli (actin, villin, fimbrin, and the 110-kD protein). Formation of basolateral microvilli required polymerization of actin and proceeded at glycocalyx-studded plaques that resembled the dense plaques located at the tips of apical microvilli. BBs from the basolateral membrane became internalized into BB-containing vacuoles which served as recipient organelles for newly synthesized apical membrane proteins. The BB vacuoles fused with each other and finally were inserted into the apical BB. Polarized distribution of Na+,K+- ATPase, a basolateral membrane protein, was not affected by drug- induced depolymerization of MTs. These observations indicate that Golgi- derived carrier vesicles (CVs) containing apical membrane proteins are vectorially guided to the apical cell surface by a retrograde transport along MTs. MTs are uniformly oriented towards a narrow space underneath the apical terminal web (termed subterminal space) that contains MT- organizing properties and controls polarized alignment of MTs. In contrast to apical CVs, targeting of basolateral CVs appears to be independent of MTs but demands a barrier at the apical membrane domain that prevents basolateral CVs from apical fusion (transport barrier hypothesis).  相似文献   

7.
The tissue used in this study was the midgut of the tobacco hornworm larva, Manduca sexta. The midgut epithelium is a single layer of cells resting on a thin basal lamina and underlying discontinuous muscle layer. The epithelial cells are of two main types, goblet and columnar cells, joined together by the septate junctions characteristic of insect epithelia. From this tissue we were able to isolate four distinct plasma membrane fractions; the lateral membranes, the columnar cell apical membrane, the goblet cell apical membrane and a preparation of basal membranes from both cell types. The lateral membranes were isolated by density gradient centrifugation following gentle homogenization of the midgut hypotonic medium, which caused the cells to rupture at their apical and basal surfaces, releasing long segments of lateral membranes still joined by their septate junctions. For isolation of apical and basal membranes the tissue was disrupted by ultrasound, based on the light microscopic observation that carefully controlled ultrasound can be used to disrupt each cell in layers starting at the apical surface. The top layer contained the columnar cell apical membrane, which consists of microvilli forming a brush border covering the lumenal surface of the epithelium. The second layer contained the goblet cell apical membrane, which is invaginated to form a cavity occupying the apical half of the cell, and the third layer contained the basal membranes. As each layer was stripped off the epithelium it was collected and the plasma membrane purified by differential or density gradient centrifugation. For all four membrane fractions, the isolation procedure was designed to preserve the original structure of the membrane as far as possible. This allowed electron microscopy to be used to follow each step in the isolation procedure, and to identify the constituents of each subcellular preparation. Although developed specifically for M. sexta midgut, these techniques could readily be modified for use on other epithelia.  相似文献   

8.
In the human gut mucosa, specialized M cells deliver intact foreign macromolecules and commensal bacteria from the lumen to organized mucosal lymphoid tissues triggering immune responses. M cells are also major sites of adhesion and invasion for enteric pathogens. The molecular features of M cell apical surfaces that promote microbial normal attachment are still largely unknown. We have demonstrated previously that in the human colonic epithelium, carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1) are integral components of the apical glycocalyx which participate in epithelial–microbial interactions. In this study, based on the reactivity of specific monoclonal antibodies and on immunoelectron microscopy, we show that M cells of human colonic solitary lymphoid follicles express CEA and CEACAM1 on the apical surface. Recently these highly glycosylated molecules have been characterized as protein receptors for different bacteria. This leads us to propose a role for CEA and CEACAM1 in the adherence of enteric bacteria to the apical membrane of colonic M cells. We also hypothesize that, unlike colonic enterocytes, M cells lack the defense mechanism that eliminates CEA and CEACAM1 upon microbial binding and which is based on vesiculation of microvillus plasma membrane.  相似文献   

9.
Electron microscopic examination of the paired coxal glands of the horseshoe crab Limulus polyphemus, focusing on urinary and vascular channels, shows six morphologically distinct regions. Each of four nephridial lobes consists of two cortical layers surrounding a medulla. The outer and inner cortexes contain blood vessels separated by a basement membrane from the urinary space lined by podocytes. Podocyte foot processes are applied to the basement membrane, interdigitate with those from other podocytes, and have a filtration slit diaphragm between them. Cortical morphology demonstrates ultrafiltration of blood, a previously undescribed function of the gland, as well as possible endocytic reabsorption of materials by the podocytes. The medulla drains into the stolon connecting the four lobes. These two areas have urinary tubules of cuboidal epithelium featuring microvillous-like apical projections, cytoplasmic vesicles and vacuoles, elaborate lateral interdigitations with septate junctions, and basal invaginations containing numerous mitochondria. These tubules are closely surrounded by blood channels, lined by a basement membrane containing embedded support cells. The medulla and stolon morphology are suggestive of both ion transport and water movement, in keeping with the gland's role in osmoregulation. The stolon empties into the end sac in the base of the most posterior lobe. It is lined by tall epithelium exhibiting apical overlap, blunt projections into the lumen, apparent endocytic vesicles, and basal plasma membrane infoldings with mitochondria. The end sac drains into the conducting nephric duct, the proximal end of which is lined by a cuticle. J. Morphol. 234:233–252, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
In human intestinal disease induced by Salmonella typhimurium, transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. In this report, we model those interactions in vitro, using polarized monolayers of the human intestinal epithelial cell, T84, isolated human PMN, and S. typhimurium. We show that Salmonella attachment to T84 cell apical membranes did not alter monolayer integrity as assessed by transepithelial resistance and measurements of ion transport. However, when human neutrophils were subsequently placed on the basolateral surface of monolayers apically colonized by Salmonella, physiologically directed transepithelial PMN migration ensued. In contrast, attachment of a non-pathogenic Escherichia coli strain to the apical membrane of epithelial cells at comparable densities failed to stimulate a directed PMN transepithelial migration. Use of the n-formyl-peptide receptor antagonist N-t-BOC-1-methionyl-1-leucyl-1- phenylalanine (tBOC-MLP) indicated that the Salmonella-induced PMN transepithelial migration response was not attributable to the classical pathway by which bacteria induce directed migration of PMN. Moreover, the PMN transmigration response required Salmonella adhesion to the epithelial apical membrane and subsequent reciprocal protein synthesis in both bacteria and epithelial cells. Among the events stimulated by this interaction was the epithelial synthesis and polarized release of the potent PMN chemotactic peptide interleukin-8 (IL-8). However, IL-8 neutralization, transfer, and induction experiments indicated that this cytokine was not responsible for the elicited PMN transmigration. These data indicate that a novel transcellular pathway exists in which subepithelial PMN respond to lumenal pathogens across a functionally intact epithelium. Based on the known unique characteristics of the intestinal mucosa, we speculate that IL-8 may act in concert with an as yet unidentified transcellular chemotactic factor(s) (TCF) which directs PMN migration across the intestinal epithelium.  相似文献   

11.
The midgut cells of Tomocerus minor (Insecta, Collembola) were examined with the electron microscope and cytochemically. The midgut epithelium consists of a series of cells characterised by numerous mineral concretions scattered throughout the cytoplasm. Mitochondria are abundant; microvilli are well developed at the apical surface of the cell. A zonula continua (continuous junction) characterises the apical contact region of these cells. Polysaccharides, glycoproteins and carbohydrate components have been demonstrated on the surface of microvilli. Peritrophic membranes surround the food bolus and preserve midgut cells from mechanical abrasion. Lysosomes are present during the alimentary period and show strong acid phosphatase activity. During an intermoulting cycle, two stages can be observed: (1) the postexuvial feeding period during which cytoplasmic extrusions appear at the apical part of the cell: lysosomes increase in number and autophagic vacuoles appear. (2) The preexuvial fasting period; a new epithelium grows beneath the old one and pushes it into the lumen. Degeneration processes can be observed in the old epithelium. This excretory reactivity of the midgut epithelium has been compared to the cycle of the cuticle.  相似文献   

12.
Uroplakins, cytokeratins and the apical plasma membrane were studied in the epithelia of mouse urinary tract. In the simple epithelium covering the inner medulla of the renal pelvis, no uroplakins or cytokeratin 20 were detected and cells had microvilli on their apical surface. The epithelium covering the inner band of the outer medulla became pseudostratified, with the upper layer consisting of large cells with stalks connecting them to the basal lamina. Uroplakins and cytokeratin 20 were not expressed in these cells. However, some superficial cells appeared without connections to the basal lamina; these cells expressed uroplakins Ia, Ib, II and III and cytokeratin 20, they contained sparse small uroplakin-positive cytoplasmic vesicles and their apical surface showed both microvilli and ridges. Cytokeratin 20 was seen as dots in the cytoplasm. This epithelium therefore showed partial urothelial differentiation. The epithelium covering the outer band of the outer medulla gradually changed from a two-layered to a three-layered urothelium with typical umbrella cells that contained all four uroplakins. Cytokeratin 20 was organized into a complex network. The epithelium possessed an asymmetric unit membrane at the apical cell surface and fusiform vesicles. Umbrella cells were also observed in the ureter and urinary bladder. In males and females, the urothelium ended in the bladder neck and was continued by a non-keratinized stratified epithelium in the urethra in which no urothelial cell differentiation markers were detected. We thus show here the expression, distribution and organization of specific proteins associated with the various cell types in the urinary tract epithelium.W. Mello Jr. thanks FAPESP, São Paulo, Brazil for financial support.  相似文献   

13.
Serial sectioning was used to determine the occurrence of ciliated cells, and a morphological technique was used to estimate the relative and absolute surface areas of apical and basolateral membrane of the epithelial cells lining the ductuli efferentes of the rat. It was found that the ciliated cells constitute 15% of the epithelial cells and occur as groups of mainly 1–3 cells which are distributed at random in the duct epithelium. For the non-ciliated cells it was estimated that the formation of microvilli by the apical membrane increased the surface area of that border by a factor of 37-fold. The average surface density of the basolateral membrane was 76% the surface density of the apical membrane. However, there was a 3-fold increase in surface density along the apicalbasal axis of the basolateral plasmalemma. In the Discussion, the ductuli efferentes are compared to their homologue, the proximal tubules of the kidney, in the rates of fluid transport and membrane adaptations of their epithelium.  相似文献   

14.
Analysis of the mechanisms that control epithelial polarization has revealed that cues for polarization are mediated by transmembrane proteins that operate at the apical, lateral, or basal surface of epithelial cells. Whereas for any given epithelial cell type only one or two polarization systems have been identified to date, we report here that the follicular epithelium in Drosophila ovaries uses three different polarization mechanisms, each operating at one of the three main epithelial surface domains. The follicular epithelium arises through a mesenchymal-epithelial transition. Contact with the basement membrane provides an initial polarization cue that leads to the formation of a basal membrane domain. Moreover, we use mosaic analysis to show that Crumbs (Crb) is required for the formation and maintenance of the follicular epithelium. Crb localizes to the apical membrane of follicle cells that is in contact with germline cells. Contact to the germline is required for the accumulation of Crb in follicle cells. Discs Lost (Dlt), a cytoplasmic PDZ domain protein that was shown to interact with the cytoplasmic tail of Crb, overlaps precisely in its distribution with Crb, as shown by immunoelectron microscopy. Crb localization depends on Dlt, whereas Dlt uses Crb-dependent and -independent mechanisms for apical targeting. Finally, we show that the cadherin-catenin complex is not required for the formation of the follicular epithelium, but only for its maintenance. Loss of cadherin-based adherens junctions caused by armadillo (beta-catenin) mutations results in a disruption of the lateral spectrin and actin cytoskeleton. Also Crb and the apical spectrin cytoskeleton are lost from armadillo mutant follicle cells. Together with previous data showing that Crb is required for the formation of a zonula adherens, these findings indicate a mutual dependency of apical and lateral polarization mechanisms.  相似文献   

15.
Higashi  N; Tsujii  K; Sunamoto  J 《Chemical senses》1998,23(6):709-716
We established a hybridoma clone 1N1 that produced a monoclonal antibody to stain the apical portion of frog taste cells, by directly immunizing taste discs of the bullfrog (Rana catesbeiana) without any dispersion procedure of the taste organ. The antibody stained discrete regions on the surface of the taste discs, but did not stain the epithelium sheet of the tongue devoid of taste discs. The antibody stained approximately 93% of the taste discs tested (172/184) derived from nine frogs, showing that distribution of the antigen was common to most of the taste discs. The following observations strongly suggested that the antibody recognized a certain antigen on the apical membrane of the taste cells. (i) The antibody selectively stained cross points of intermucus areas on the surface of the taste disc. Neither the mucus cells nor the wing cells that mainly cover the surface were stained with the antibody. (ii) Dispersed taste cells were prepared by calcium ion chelating and subsequently by collagenase treatment to avoid digestion of the antigen. The antibody stained the apical end of the taste cells.   相似文献   

16.
Comparisons were made between cell surfaces of normal and migrating corneal epithelium of the rat by localizing and/or quantifying concanavalin A (Con A) and wheat germ agglutinin (WGA) binding. Our results indicate that apical cell surfaces of the leading edge of a migrating sheet of epithelium differ from those of normal epithelium and that the various cell layers within the stratified normal epithelium have different lectin-binding characteristics. Three methods of monitoring lectin binding to cell surfaces were employed. Based on ferritin-conjugated Con A, ferritin-conjugated WGA, and [3H]Con A binding, apical cell membranes of migrating epithelia bind more Con A and WGA than do apical membranes of superficial cells of normal stratified epithelia. With both fluorescein isothiocyanate (FITC)-Con A and -WGA, membranes of all the cells of the leading edge of the migrating sheet fluoresce intensely. FITC-Con A binding of normal stratified epithelium is relatively uniform through all cell layers with no discernible staining of the apical membrane of superficial cells. With FITC-WGA, however, fluorescence is present only on basal cell layers but not on superficial cells. These data demonstrate that apical cell surface sugars on a sheet of epithelium migrating to cover a wound differ from the apical cell surface sugars of normal epithelium. As indicated by FITC-WGA binding, cells of the migrating sheet have cell surface characteristics similar to basal cells of normal epithelia. Perhaps, upon wounding, the leading edge of the migrating sheet is derived from the basal cell population of the normal stratified epithelium, or perhaps there is an alteration in cell surface glycoproteins as the cells become migratory.  相似文献   

17.
The integument and podia of the sea cucumber Thyone briareus were examined by bright field and electron microscopy. The epidermal surface was found to be covered by an acellular, PAS positive cuticle which appeared to be secreted by the underlying epidermal cells. Although the superficial portion of the cuticle contains numerous fine filaments, their ultrastructure bears no resemblance to collagen fibers. The epidermal cells are widely spaced and have long apical processes that extend along the under surface of the cuticle forming a contiguous epithelium. The apical expansions of the epidermal cells are attached to one another by means of septate desmosomes which may run continuously around all epidermal cells. Special attachment structures within these apical expansions appear to bind the cuticle to the dermis. The epidermal cells and their apical expansions are separated from the dermis by an 800 Å thick basement membrane. Granule containing cells in the upper dermis send processes up to the cuticle where they are bound to the typical epidermal cells by septate desmosomes. The abundant membrane bound granules of the cells enter villous-like processes which pass through the cuticle. The function of these cells may be to produce an adhesive material on the podia or they may be pigment cells. The thick dermis consists of a superficial zone, containing largely ground substance; a middle or laminated zone containing laminae of collagen fibers arranged in an orthogonal fashion; and a hypodermis consisting largely of ground substance and reticular fibers. Fibroblasts are abundant in the superficial dermis and between the collagen laminae. Wandering coelomocytes, or morula cells, accumulate between the collagen laminae and in the hypodermis. They may also become an integral part of the epidermis by forming septate desmosomes with epidermal cells. Morula cells contain highly specialized spherules whose tinctorial properties and electron microscopic appearance suggest that they contain protein and mucopolysaccharide.  相似文献   

18.
As part of a comparative morphological study, the fine structure of the retinal pigment epithelium (RPE), the choriocapillaris and Bruch's membrane (complexus basalis) has been investigated by light and electron microscopy in the mallard (Anas platyrhynchos). In this species the RPE consists of a single layer of cuboidal cells which display numerous very deep basal (scleral) infoldings and extensive apical (vitreal) processes which enclose photoreceptor outer segments. The RPE cells are joined laterally by prominent basally-located tight junctions. Internally smooth endoplasmic reticulum is the most abundant cell organelle with only small amounts of rough endoplasmic reticulum present. Polysomes are abundant as are basally-located mitochondria which often displayed a ring-shaped profile. The cell nucleus is large and vesicular. Melanosomes are plentiful only within the apical processes of the RPE cells in the light-adapted state. Myeloid bodies are large and numerous and very often have ribosomes on their outer surface. Bruch's membrane (complexus basalis) shows a pentalaminate structure but with only a poorly represented central elastic lamina. Profiles of the choriocapillaris are relatively small and the endothelium of these capillaries while extremely thin facing the retinal epithelium is but minimally fenestrated.  相似文献   

19.
Ultrastructural changes in the vaginal epithelium of the rhesus monkey during the menstrual cycle and pregnancy were studied by scanning and transmission electron microscopy. During the menstrual cycle, the epithelium was keratinized but varied in thickness. Cells of the basal and parabasal layers were polyhedral in shape but as they differentiated they accumulated glycogen and filaments. Cells in the intermediate layers had keratohyaline and membrane-coating granules. Cells in the superficial layers had a thickened cell envelope, abundant keratin filaments, electron-dense intercellular material, and focal tight junctions. The epithelial surface had numerous microridges and numerous adherent bacteria; bacteria were rare on desquamating cells. The epithelium remained keratinized for about the first month of gestation, then underwent "mucification." The cells contained abundant granules and Golgi apparatus. Concomitant with this transformation, bacteria were no longer adherent to the epithelial surface and the surface cells had microvilli instead of microridges. The epithelial changes during pregnancy were roughly associated with the changing pattern of steroid hormone secretion during gestation.  相似文献   

20.
Lumenal delivery of adenovirus vectors (AdV) results in inefficient gene transfer to human airway epithelium. The human coxsackievirus and adenovirus receptor (hCAR) was detected by immunofluorescence selectively at the basolateral surfaces of freshly excised human airway epithelial cells, suggesting that the absence of apical hCAR constitutes a barrier to adenovirus-mediated gene delivery in vivo. In transfected polarized Madin-Darby canine kidney cells, wild-type hCAR was expressed selectively at the basolateral membrane, whereas hCAR lacking the transmembrane and/or cytoplasmic domains was expressed on both the basolateral and apical membranes. Cells expressing apical hCAR still were not efficiently transduced by AdV applied to the apical surface. However, after the cells were treated with agents that remove components of the apical surface glycocalyx, AdV transduction occurred. These results indicate that adenovirus can infect via receptors located at the apical cell membrane but that the glycocalyx impedes interaction of AdV with apical receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号