首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cosmid libraries have been constructed from DNA of somatic cell hybrid cell lines, each containing a fragment of human chromosome seven and including sequences closely linked to cystic fibrosis (CF). Cosmids containing human DNA as insert were isolated from the library. Three cosmids, when used as probes to total genomic DNA, detected polymorphic loci, each of which was shown to be in strong linkage disequilibrium with CF. Restriction endonuclease digestion of cosmid clones and use of a new, rapid method of chromosome walking based on competitive hybridisation of cosmid inserts has allowed identification of several groups of overlapping cosmids ("contigs") from the vicinity of CF.  相似文献   

2.
A method is described for the isolation of chromosome region specific cosmids. The 5q35 region of the long arm of human chromosome 5 was microdissected, digested with MboI, ligated to oligonucleotide adaptors, amplified by the polymerase chain reaction and cloned into a plasmid vector. Inserts which did not contain highly repetitive sequences were used to screen a chromosome 5 cosmid library by direct hybridization. There were 33 positive cosmid clones identified with 4 microclones. Individual cosmid clones were biotinylated and used as probes for fluorescence in situ hybridization to metaphase chromosomes. Of the 33 cosmids that were mapped, 29 localized to q35 and 4 to q34, demonstrating the specificity of the microdissection library and the cosmids.  相似文献   

3.
As part of our search for polymorphic DNA probes, we have screened cosmids from a human genomic DNA library for their ability to reveal RFLPs. A total of 101 randomly isolated cosmid clones were tested in Southern hybridizations for polymorphic band patterns. Fifty-four of these clones revealed RFLPs with one or more of nine restriction enzymes. Twenty-three of these clones have been further characterized and assigned to 10 different chromosomes by linkage analysis or by hybridization to panels of human-hamster hybrid cell lines. Fifteen of the probes have heterozygosities greater than or equal to .5. The relative efficiency of RsaI and PstI restriction enzymes in detecting polymorphism was different from results obtained with libraries constructed in bacteriophage vectors. Screening randomly selected cosmid probes is an efficient method for detecting RFLPs.  相似文献   

4.
We have constructed and characterized two related human chromosome 12-specific cosmid libraries. DNA from flow-sorted chromosomes from a somatic cell hybrid was cloned into a cosmid vector. Approximately 61% of the cosmids in the nearly 26,200 member arrayed libraries (LLt2NC01 and LLt2NC02) contain human DNA inserts, and 31% of the cosmids derived from human DNA contain CA repeats. One hundred and fifty-two cosmids isolated from the libraries have been mapped by fluorescence in situ hybridization (FISH). Cosmids containing human DNA inserts were localized by FISH exclusively to chromosome 12, confirming the chromosomal specificity of the libraries. The cosmids have been localized to all parts of this chromosome, although some regions are more highly represented than others. Partial sequence information was obtained from 44 mapped cosmids, and oligonucleotide primer pairs were synthesized that define unique sequence tagged sites (STSs). These mapped cosmids, and unique STSs derived from them, provide a set of useful clones and primer pairs for screening YAC libraries and developing contigs centered on regions of interest within chromosome 12. In addition, 120 of the mapped cosmids contain CA repeats, and thus they also provide a useful resource for defining highly polymorphic simple tandem repeat elements that serve as genetic markers for linkage analysis and disease gene localization.  相似文献   

5.
Buroker  N. E.  Magenis  R. E.  Weliky  K.  Bruns  G.  Litt  M. 《Human genetics》1986,72(1):86-94
Summary Human gene mapping would be greatly facilitated if marker loci with sufficient polymorphism information content were generally available. As a source of such markers, we have used cosmids from a human genomic library. We have used a rapid method for screening random cosmids to identify those homologous to genomic regions especially rich in restriction fragment length polymophisms (Litt and White 1985). This method allows whole cosmids to be used as probes against Southern transfers of genomic DNA; regions of cosmid probes homologous to repeated genomic sequences are rendered unable to anneal with Southern transfers by prerendered of the probes with a vast excess of non-radioactive genomic DNA. From one cosmid (C1-11) identified by this procedure, we have isolated four single-copy probes, each of which identifies a polymorphic locus. Despite the existence of some linkage disequilibrium in this system, the polymorthism information content was computed as 0.73. Using a somatic cell hybrid mapping panel, we have mapped probes from cosmid 1–11 to human chromosome 12q. Additionally, in situ hybridization of the whole cosmid to metaphase spreads allowed more precise assignment of the locus to the region 12cenq13. The locus revealed by probes from cosmid 1–11 has been designated D12S6.  相似文献   

6.
Chromosome-specific cosmid libraries are an extremely useful resource for positional cloning projects. Once a particular region of interest has been identified, it would be of value to have an approach for isolating chromosome band-specific cosmids that could be assembled into a sublibrary for rapid screening. We constructed a region-specific sublibrary of 700 cosmids by screening a chromosome 12-specific cosmid library with a complex probe generated by degenerate oligonucleotide-primed PCR of a microdissected homogeneously staining region containing sequences amplified from chromosome 12q13–q15. Based on fluorescencein situhybridization, approximately 60% of the cosmids in the sublibrary were derived from the microdissected region. To demonstrate further the utility of this sublibrary, a 150-kb contig containing the SAS and CDK4 genes was constructed, as well as several additional contigs between CDK4 and MDM2. This study demonstrates the possibility of utilizing probes generated by microdissection for assembling band-specific sublibraries that are amenable to rapid screening with multiple markers.  相似文献   

7.
8.
Summary A cosmid library has been prepared in the lorist-B vector from a mouse/human somatic cell hybrid containing region 11q23-11pter as the only human component. This chromosome region is stably maintained in the hybrid as a result of translocation onto one copy of mouse chromosome 13. Individual cosmids containing human DNA were isolated by their ability to hybridise with total human DNA, digested with either HindIII or EcoRI, and 33 individual unique sequences were identified. These fragments were then isolated and subcloned into the bluescribe plasmid vector. Regional localisation of these unique sequences was achieved using a panel of somatic cell hybrids containing different overlapping deletions of chromosome 11. The majority of the 33 mapped sequences derived from the long arm of chromosome 11. Two clones were located within the 11p13–p14 region, which is associated with a predisposition to Wilms' tumour. These probes supplement those already mapped to this chromosome and will assist in the generation of a detailed chromosome 11 linkage map.  相似文献   

9.
A method based on the differential screening of a chromosome-specific cosmid library with amplified inter-Alu sequences obtained from a set of somatic cell hybrids has been developed to target the isolation of probes from predefined subchromosomal regions. As a model system, we have used a chromosome 22-specific cosmid library and four cell hybrids containing different parts of this chromosome. The procedure has identified cosmids that demonstrate differential hybridization signals with Alu-PCR products from these cell hybrids. We show, by in situ hybridization or individual mapping, that their hybridization pattern is indicative of their sublocalization on chromosome 22, thus resulting in a large enrichment factor for the isolation of probes from specific small chromosome subregions. Depending on the local Alu-sequence density, from 3 to 10 independent loci per megabase of genome can thus be identified.  相似文献   

10.
Molecular probes that contain DNA flanking CpG-rich restriction sites are extremely valuable in the construction of physical maps of chromosomes and in the identification of genes associated with hypomethylated HTF (HpaII tiny fragment) islands. We describe a new approach to the isolation and characterization of linking clones in arrayed chromosome-specific cosmid libraries through the large-scale semiautomated restriction mapping of cosmid clones. We utilized a cosmid library representing human chromosome 11q12-11qter and carried out automated restriction enzyme analysis, followed by regional localization to chromosome 11q using high-resolution in situ suppression hybridization. Using this approach, 165 cosmid linking clones containing one or more NotI, BssHII, SfiI, or SacII sites were identified among 960 chromosome-specific cosmids. Furthermore, this analysis allowed clones containing a single site to be distinguished from those containing clusters of two or more rare sites. This analysis demonstrated that more than 75% of cosmids containing a rare restriction site also contained a second rare restriction site, suggesting a high degree of CpG-rich restriction site clustering. Thirty chromosome 11q-specific cosmids containing rare CpG-rich restriction sites were regionally localized by high-resolution fluorescence in situ suppression hybridization, demonstrating that all of the CpG-rich sites detected by this method were located in bands 11q13 and 11q23. In addition, the distribution of (CA)n repetitive sequences was determined by hybridization of the arrayed cosmid library with oligonucleotide probes, confirming a random distribution of microsatellites among CpG-rich cosmid clones. This set of reagent cosmid clones will be useful for physical linking of large restriction fragments detected by pulsed-field gel electrophoresis and will provide a new and highly efficient approach to the construction of a physical map of human chromosome 11q.  相似文献   

11.
We have explored the potential of irradiation-fusion gene transfer (IFGT) hybrids as a source of well-defined human chromosome fragments from which probes can be derived. Extensive characterization of the IFGT hybrid 4J4 with a full panel of markers from Chromosome (Chr) 6 showed that the human DNA content derives largely from 6p21.3 and 6q27. A cosmid library has been constructed from 4J4 DNA, and 370 recombinants containing human DNA have been isolated and overlapping clones ordered into 20 contigs. Regional localization of representative clones from each contig, determined by fluorescent in situ hybridization (FISH), places 13 contigs in 6q27 and 6 in 6p21.3. Preliminary screening of cDNA libraries with selected cosmids has identified two expressed sequences. Since there are a number of medically important genes in both these regions of human Chr 6 with several disease loci linked to the HLA-A region in 6p21.3 and various tumor suppressor genes to 6q27, this library will provide a valuable resource to aid the isolation of candidate genes for these diseases. In addition, unique markers for detailed physical and genetic mapping of these regions of human Chr 6 can be easily obtained.  相似文献   

12.
Clones containing sequences derived from the human Y chromosome have been isolated from cosmid libraries of a human-mouse hybrid cell line. These libraries were constructed in the new expression vectors Homer V and Homer VI. The collection of cosmids isolated is enriched for unique sequence DNA and only a few of the cosmids contain the tandemly repeated sequences which constitute a major portion of the Y chromosome. Three cosmids have been studied in detail. One cosmid shows extensive homology over at least 20 kb with the long arm of the X chromosome; this homology is outside the predicted homology region required for sex chromosome pairing. The other two clones contain unique sequences specific to the Y chromosome and both map to the heterochromatic region of the Y chromosome long arm.  相似文献   

13.
A total of 5700 human chromosome 3-specific cosmid clones was isolated from a series of cosmid libraries constructed from somatic cell hybrids whose only human component was an entire chromosome 3 or a chromosome 3 containing an interstitial deletion removing 50% of long arm sequences. Several unique sequence chromosome 3-specific hybridization probes were isolated from each of 616 of these cosmids. These probes were then used to localize the cosmids by hybridization to a somatic cell hybrid deletion mapping panel capable of resolving chromosome 3 into nine distinct subregions. All 616 of the cosmids were localized to either the long or short arm of chromosome 3 and 63% of the short arm cosmids were more precisely localized. We have identified a total of 87 cosmids that contain fragments that are evolutionarily conserved. Fragments from these cosmids should prove useful in the identification of new chromosome 3-specific genes as well as in comparative mapping studies. The localized cosmids should provide excellent saturation of human chromosome 3 and facilitate the construction of physical and genetic linkage maps to identify various disease loci including Von Hippel Lindau disease and renal and small cell lung carcinoma.  相似文献   

14.
Clustered GATA repeats (Bkm sequences) on the human Y chromosome   总被引:8,自引:4,他引:4  
Summary Sixty eight individual clones of a human Y chromosome cosmid library were screened for the presence of GATA. repeats, the major component of Bkm-related DNA sequences. Nine cosmid clones were found to cross-hybridize. The sequence organization of the repetitive base quadruplet GATA was analyzed using synthetic oligonucleotide probes. Subclones of GATA-positive cosmid clones were used for chromosomal localization of the Y-derived DNA sequences thus revealing male-specificity or male-female homology.  相似文献   

15.
A human chromosome 3-specific cosmid library was constructed from a somatic cell hybrid containing human chromosome 3 as its only human component. This library was screened to identify 230 human recombinants which contained an average insert size of 37 kilobases. DNA prepared from 54 of these cosmids, representing 2000 kilobases of human DNA, was then tested for restriction endonuclease sites for EcoRI, HindIII, KpnI, XhoI, and DraI, as well as those of the rare-cutting restriction endonucleases NotI, SfiI, NruI, MluI, SacII, and BssHII. Sites for the latter enzymes were much more abundant than would be expected from theoretical calculations, reflecting non-random clustering of these sites. This has important implications for the use of these enzymes in the construction of physical maps of chromosomes. Some individual cosmids contained large numbers of rare sites, offering an alternative means of physically mapping chromosomes based upon identifying clusters of rare restriction sites. These clusters appear to be spaced an average of 1000 kb apart.  相似文献   

16.
To facilitate the identification of genes within genomic DNA, we have developed a method based on the use of short oligonucleotides designed from the consensus sequences of splice sites. We describe here the hybridization and washing conditions under which such oligonucleotides can be used to screen cosmid libraries. We confirm the presence of genes within cosmids identified by screening with one oligonucleotide by showing that DNA isolated from such cosmids will hybridize to another splice-site oligonucleotide.  相似文献   

17.
18.
Saturation of human chromosome 3 with unique sequence hybridization probes   总被引:4,自引:0,他引:4  
We have generated chromosome 3-specific recombinant libraries in both lambda and cosmid cloning vectors starting with somatic cell hybrids (hamster/human) containing either an intact chromosome 3 or a chromosome 3 with an interstitial deletion removing 75% of long-arm sequences. The libraries contained between 2 X 10(5) and 5 X 10(6) independent recombinants. Approximately 2% of the recombinants in these libraries contain inserts of human DNA. These were identified by hybridizing the recombinants to radioactively labeled total human DNA. Over 2500 recombinants containing human DNA were isolated from these various libraries and DNA was prepared from each of them. This represents 80,000 kb of cloned chromosome 3 sequences. One-third of the DNAs were digested with EcoRI or HindIII, and fragments free of repetitive sequences were radioactively labeled using random hexanucleotide primers and tested as unique sequence hybridization probes. Over 6500 of the fragments were tested and of these 758 were unique sequence probes with minimal or no background hybridization. Their hybridization only to chromosome 3 was verified. These probes, which were derived from 452 independent recombinants, should provide an effective saturation of human chromosome 3.  相似文献   

19.
A physical map of the D. melanogaster genome is being constructed, in the form of overlapping cosmid clones that are assigned to specific polytene chromosome sites. A master library of ca. 20,000 cosmids is screened with probes that correspond to numbered chromosomal divisions (ca. 1% of the genome); these probes are prepared by microdissection and PCR-amplification of individual chromosomes. The 120 to 250 cosmids selected by each probe are fingerprinted by Hinfl digestion and gel electrophoresis, and overlaps are detected by computer analysis of the fingerprints, permitting us to assemble sets of contiguous clones (contigs). Selected cosmids, both from contigs and unattached, are then localized by in situ hybridization to polytene chromosomes. Crosshybridization analysis using end probes links some contigs, and hybridization to previously cloned genes relates the physical to the genetic map. This approach has been used to construct a physical map of the 3.8 megabase DNA in the three distal divisions of the x chromosome. The map is represented by 181 canonical cosmids, of which 108 clones in contigs and 32 unattached clones have been mapped individually by in situ hybridization to chromosomes. Our current database of in situ hybridization results also includes the beginning of a physical map for the rest of the genome: 162 cosmids have been assigned by in situ hybridization to 129 chromosomal subdivisions elsewhere in the genome, representing 5 to 6 megabases of additional mapped DNA.  相似文献   

20.
A new shuttle cosmid vector, pKC505, was constructed for the cloning of Streptomyces DNA. This vector, which can be conjugally transferred between different streptomycetes, was used to construct a genomic library from a spiramycin-producing S. ambofaciens strain. By transformation of the spiramycin-sensitive S. griseofuscus with the library, three phenotypically different spiramycin-resistance genes were isolated. S. ambofaciens DNA in these clones was colinear with the chromosome, and the cloned DNA was stable in E. coli, S. griseofuscus and S. fradiae. These cosmids could be isolated easily from S. griseofuscus, an improvement over the previous shuttle cosmid vector, pKC462a [Stanzak et al., Bio/Technology 4 (1986) 229-232], which was somewhat difficult to isolate from S. lividans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号