首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports on the divalent metal ion specificity for phosphorylase kinase autophosphorylation and, in particular, provides a comparison between the efficacy of Mg2+ and Mn2+ in this role. As well as requiring Ca2+ plus divalent metal ion-ATP2- as substrate, both phosphorylase kinase autoactivation and phosphorylase conversion are additionally modulated by divalent cations. However, these reactions are affected differently by different ions. Phosphorylase kinase-catalyzed phosphorylase conversion is maximally enhanced by a 4- to 10-fold lower concentration of Mg2+ than is autocatalysis and, whereas both reactions are stimulated by Mg2+, autophosphorylation is activated by Mn2+, Co2+, and Ni2+ while phosphorylase a formation is inhibited. This difference may be due to an effect of free Mn2+ on phosphorylase rather than the inability of phosphorylase kinase to use MnATP as a substrate when catalyzing phosphorylase conversion since Mn2+, when added at a level which minimally decreases [MgATP], greatly inhibits phosphorylase phosphorylation. The interactions of Mn2+ with phosphorylase kinase are different from those of Mg2+. Not only are the effects of these ions on phosphorylase activation opposite, but they also provoke different patterns of subunit phosphorylation during phosphorylase kinase autocatalysis. With Mn2+, the time lag of phosphorylation of both the alpha and beta subunits of phosphorylase kinase in autocatalysis is diminished in comparison to what is observed with Mg2+, and the beta subunit is only phosphorylated to a maximum of 1 mol/mol of subunit. With both Mg2+ and Mn2+ the alpha subunit is phosphorylated to a level in excess of 3 mol/mol, a level similar to that obtained for beta subunit phosphorylation in the presence of Mg2+. The support of autophosphorylation by both Co2+ and Ni2+ has characteristics similar to those observed with Mn2+. Although Mn2+ stimulation of autophosphorylation occurs at levels much higher than normal physiological levels, the possible potential of phosphorylase kinase autophosphorylation as a control mechanism is illustrated by the 80- to 100-fold activation that occurs in the presence of Mn2+, a level far in excess of the enzyme activity change normally seen with covalent modification. Autophosphorylation of phosphorylase kinase demonstrates a Km for Mg X ATP2- of 27.7 microM and a Ka for Mg2+ of 3.1 mM. The reaction mechanism of autophosphorylation is intramolecular. This latter observation may indicate that phosphorylase kinase autocatalysis could be of potential physiological relevance and could occur with equal facility in cells containing either constitutively high or low levels of this enzyme.  相似文献   

2.
Phosphorylase kinase was found to be activated and phosphorylated at 10mM Mg2+ by the cAMP-dependent protein kinase-catalyzed reaction ot much higher levels than observed previously when reactions were carried out in 1 to 2 mM Mg2+ (Cohen, P. (1973) Eur. J. Biochem. 34, 1; Hayakawa, T., Perkin, J.P., and Krebs, E.G. (1973) Biochemistry 12, 574). That the reaction at 10 mM Mg2+ is protein kinase-catalyzed is supported by several observations: (a) the reaction is facilitated by the addition of protein kinase; (b) the reaction depends on cAMP when protein kinase holoenzyme is uded; (c) the reaction is not inhibited by 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetate which is known to inhibit autoactivation and autophosphorylation of phosphorylase kinase; and (d) the protein inhibitor of protein kinase inhibits this reaction. The phosphorylation and activation of phosphorylase kinase seem to occur in two phases. At low Mg2+ only the first phase is manifested and involves the incorporation of 2 mol of phosphate, 1 mol into each of Subunits A and B. At high Mg2+ additional sites are phosphorylated almost exclusively on Subunit A, with phosphate incorporation approaching the final level of 7 to 9 mol. Enzyme activity at high Mg2+ is 2 to 3 times higher than that observed when activation is studied at low Mg2+. The observation that both casein and type II histone are phosphorylated to the same extent at 1 mM and 10 mM Mg2+ suggested that high Mg2+ may be altering the conformation of phosphorylase kinase thus rendering more phosphorylation sites accessible to protein kinase. Since the phosphorylation of phosphorylase kinase by either the protein kinase-catalyzed or autocatalytic reaction can result in the incorporation of 7 to 9 mol of phosphate, the finding that only about seven sites become phosphorylated by both mechanisms acting together suggest that activation by these two mechanisms may involve common phosphorylation sites.  相似文献   

3.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

4.
The isolated glycogen particle provides a means to examine the regulation of glycogen metabolism with the components organized in a functional cellular complex. With this system, we have studied the control of phosphorylase kinase activation by Ca2+ and cAMP. Contrary to a previous report (Heilmeyer, L. M. G., Jr., Meyer, F., Haschke, R. H., and Fisher, E. H. (1980) J. Biol. Chem. 245, 6649-6656), phosphorylase kinase became activated during incubation of the glycogen particle with MgATP2- and Ca2+. Part of this activation could be attributed to the action of the cAMP-dependent protein kinase; however, it was not possible to quantitatively correlate activation with phosphorylation in the presence of Ca2+ and Mg2+ due to a large, but uncertain, contribution of synergistic activation caused by these ions. This latter activation had properties similar to those described by King and Carlson (King, M. M., and Carlson, G. M. (1980) Arch. Biochem. Biophys. 209, 517-523) with the purified enzyme, and its occurrence also explains why phosphorylase kinase activation in the glycogen particle was not observed previously. The cAMP-dependent activation of phosphorylase kinase in the glycogen particle has been characterized. It occurred in a similar manner when either the cAMP-dependent protein kinase or cAMP was added, thus indicating that the phosphorylation sites of phosphorylase kinase complexed in the glycogen particle were accessible to endogenous or exogenous enzyme. In the glycogen particle, both the alpha and beta subunits were phosphorylated by the cAMP-dependent protein kinase, but the alpha subunit dephosphorylation appeared to be preferentially regulated by Ca2+. The activity of phosphorylase kinase in the glycogen particle is regulated by the phosphorylation of both the alpha and beta subunits.  相似文献   

5.
This report provides a characterization of the effects of varying the concentrations of Mg2+, ATP, phosphorylase kinase, and the cAMP-dependent protein kinase on the activation and phosphorylation of phosphorylase kinase. The results show the following. (a) The Km for MgATP2- for the cAMP-dependent protein kinase-catalyzed phosphorylation is decreased by increasing Mg2+, probably as a consequence of decreasing the free ATP:MgATP2- ratio and increasing free Mg2+. (b) Whereas beta subunit phosphorylation of phosphorylase kinase plays a prominent role in determining its activity, alpha subunit phosphorylation can also modulate activity. (c) The phosphorylation of the alpha subunit, which occurs following the initial cAMP-dependent phosphorylation of the beta subunit, is catalyzed by the cAMP-dependent protein kinase and is not a consequence of EGTA-insensitive (or EGTA-sensitive) autophosphorylation occurring as a result of the enhanced phosphorylase kinase activity. (d) The relationship between subunit phosphorylation and phosphorylase kinase activation is complex and particularly dependent upon concentrations of cAMP-dependent protein kinase and phosphorylase kinase in the activation reaction. The data suggest the possibilities that the pathway of phospho-intermediates involved in the activation process probably varies with the activation conditions, that the efficacy of a specific site to be covalently modified is dependent upon the phosphorylation status of other sites, and that the effect of phosphorylation in regulating activity may also be dependent on the phosphorylation status of other sites. It is clear from the data that the activation process for phosphorylase kinase can be very complex, and it is possible that this complexity might have significant physiological ramifications.  相似文献   

6.
The AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase important for the responses to metabolic stress. It consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, and is regulated both by the allosteric action of AMP and by phosphorylation of the alpha and beta subunits catalyzed by AMPKK(s) and autophosphorylation. The Thr172 site on the alpha subunit has been previously characterized as an activating phosphorylation site. Using bacterially expressed AMPK alpha1 subunit proteins, we have explored the role of Thr172-directed AMPKKs in alpha subunit regulation. Recombinant alpha1 subunit proteins, representing the N-terminus, have been expressed as maltose binding protein (MBP) 6x His fusion proteins and purified to homogeneity by Ni(2+) chromatography. Both wild-type alpha1(1-312) and alpha1(1-312)T172D are inactive when expressed in bacteria, but the former can be fully phosphorylated (1 mol/mol) on Thr172 and activated by a surrogate AMPKK, CaMKKbeta. The corresponding AMPKalpha1(1-392), an alpha construct containing its autoinhibitory sequence, can be similarly phosphorylated, but it remains inactive. In an insulinoma cell line, either low glucose or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) treatment leads to activation and T172 phosphorylation of endogenous AMPK. Under the same conditions of cell incubation, we have identified an AMPKK activity that both phosphorylates and activates the recombinant alpha1(1-312), but this Thr172-directed AMPKK activity is unaltered by low glucose or AICAR, indicating that it is constitutively active.  相似文献   

7.
Yeast phosphorylase is phosphorylated and activated by a cyclic AMP-independent protein kinase (called phosphorylase kinase) and a cyclic AMP-dependent protein kinase. Only in the presence of both kinases is phosphorylase fully activated and phosphorylated. No evidence was found for the presence of two phosphorylation sites as an identical phosphopeptide pattern of phosphorylase is obtained after phosphorylation by either one or both kinases. The kinases probably phosphorylate identical sites but recognize different subunits of phosphorylase. Phosphorylase kinase phosphorylates the high-Mr subunit while cAMP-dependent protein kinase phosphorylates the low-Mr subunit.  相似文献   

8.
The alpha subunit of skeletal muscle phosphorylase kinase, as isolated, carries phosphate at the serine residues 1018, 1020 and 1023. Employing the S-ethyl-cysteine method, these residues are found to be phosphorylated partially, i.e. differently phosphorylated species exist in muscle. Serine 1018 is a site which can be phosphorylated by the cyclic-AMP-dependent protein kinase. The serine residues 972, 985 and 1007 are phosphorylated by phosphorylase kinase itself when its activity is stimulated by micromolar concentrations of Ca2+. These phosphorylation sites are not identical to those found to be phosphorylated already in the enzyme as prepared from freshly excised muscle. A 'multiphosphorylation loop' uniquely present in this but not in the homologous beta subunit contains all the phosphoserine residues so far identified in the alpha subunit.  相似文献   

9.
The autophosphorylation of the alpha subunit of phosphorylase kinase occurs simultaneously at multiple sites during incorporation of the first mol of phosphate. The predominant and initial autophosphorylation site on this subunit is different than the major site phosphorylated by cAMP-dependent protein kinase, which also phosphorylates multiple sites, as evidenced by two-dimensional phosphopeptide maps. All of the sites on the alpha subunit phosphorylated by cAMP-dependent protein kinase comigrate on peptide maps with autophosphorylation phosphopeptides; however, several phosphopeptides observed after autophosphorylation are not evident following phosphorylation by cAMP-dependent protein kinase. The phosphopeptide maps of the alpha subunit are the same whether autophosphorylation is carried out at pH 6.8 or 8.2 or whether MnATP is used instead of MgATP; there is only a slight difference in the maps brought about by EGTA-insensitive autophosphorylation. The autophosphorylation is shown to be an intrinsic activity of the phosphorylase kinase molecule; this conclusion is based on the observed copurification of the autophosphorylation activity with activities toward phosphorylase b and kappa-casein and the unaltered influence of various effectors on these activities throughout different sequential adsorption chromatography purification steps. Additional support to that already in the literature that the initial autophosphorylation events are predominantly intramolecular is gained by showing that previously autophosphorylated enzyme has little ability to catalyze the phosphorylation of nonphosphorylated enzyme.  相似文献   

10.
Mouse BC3H1 myocytes were incubated with 32Pi before acetylcholine receptors were solubilized, immunoprecipitated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. More than 90% of the 32P found in the receptor was bound to the delta subunit. Two phosphorylation sites in this subunit were resolved by reverse phase high performance liquid chromatography after exhaustive proteolysis of the protein with trypsin. Sites 1 and 2 were phosphorylated to approximately the same level in control cells. The divalent cation ionophore, A23187, increased 32P in site 1 by 40%, but did not affect the 32P content of site 2. In contrast, isoproterenol increased 32P in site 2 by more than 60%, while increasing 32P in site 1 by only 20%. When dephosphorylated receptor was incubated with [gamma-32P]ATP and the catalytic subunit of cAMP-dependent protein kinase, the delta subunit was phosphorylated to a maximal level of 1.6 phosphates/subunit. Approximately half of the phosphate went into site 2, with the remainder going into a site not phosphorylated in cells. The alpha subunit was phosphorylated more slowly, but phosphorylation of both alpha and delta subunits was blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. Phosphorylation of the receptor was also observed with preparations of phosphorylase kinase. In this case phosphorylation occurred in the beta subunit and site 1 of the delta subunit, neither of which were phosphorylated by cAMP-dependent protein kinase. The rate of receptor phosphorylation by phosphorylase kinase was slow relative to that catalyzed by cAMP-dependent protein kinase. Therefore, it can not yet be concluded that phosphorylase kinase phosphorylates the beta subunit and the delta subunit site 1 in cells. However, the results strongly support the hypothesis that phosphorylation by cAMP-dependent protein kinase accounts for phosphorylation of the alpha subunit and the delta subunit site 2 in response to elevations in cAMP.  相似文献   

11.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

12.
A variety of proteases have been evaluated as potential structural and conformational probes of nonphosphorylated and phosphorylated phosphorylase kinase. In general, the enzyme's alpha subunit is rapidly degraded, followed in most cases by hydrolysis of the beta subunit; the gamma subunit is resistant to most proteases. Trypsin clearly distinguishes between the nonactivated and activated conformers of phosphorylase kinase, in that the beta subunit in phosphorylated enzyme, as opposed to nonphosphorylated enzyme, is markedly protected from tryptic attack. In contrast, only a small difference in the rates of proteolysis of the alpha subunit in phosphorylated and nonphosphorylated enzyme is seen, even when a protease is used that is highly selective for the alpha subunit, such as chymotrypsin or endoproteinase Arg C. Incubation of nonphosphorylated phosphorylase kinase with either Mg2+ or Ca2+, which are activating cations, also protects the beta subunit from tryptic hydrolysis, whereas Mn2+, which inhibits the kinase activity, has little effect on proteolysis. The allosteric activator ADP also causes the beta subunit to become refractory to trypsin and mimics the effects of phosphorylation. Similar effector-induced conformational changes in the beta subunit are also observed with enzyme in which the alpha subunit has previously been selectively destroyed. These data indicate that activation of phosphorylase kinase by dissimilar mechanisms is associated with a conformational change in the enzyme's beta subunit that is detectable by trypsin and confirm earlier studies from this laboratory employing a chemical cross-linker as a conformational probe for activated and nonactivated conformers of the enzyme (Fitzgerald, T. J., and Carlson, G. M. (1984) J. Biol. Chem. 259, 3266-3274).  相似文献   

13.
The cAMP-dependent protein kinase catalyzes the phosphorylation of the alpha- and beta-subunits of the cardiac isozyme of phosphorylase kinase. beta-Subunit phosphorylation achieves a maximum level of between 1 to 2 mol of phosphate/mol of phosphorylase kinase, a value less than the stoichiometric content of beta-subunits in the enzyme. This, less than stoichiometric incorporation, is not a result of the presence of endogenous phosphate in equivalent sites in the remaining beta-subunit moieties. Pretreatment of phosphorylase kinase with phosphoprotein phosphatase, under conditions proven to dephosphorylate such sites, does not modify the observed extent of beta-subunit phosphorylation. alpha'-Subunit phosphorylation is initiated at a slower rate than beta but achieves a higher maximum level of incorporation. alpha'-Subunit phosphorylation, but not the extent of beta-subunit phosphorylation, is stimulated by MnCl2 and partially inhibited by NaF; neither is effected by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The activation of cardiac phosphorylase kinase that occurs concomitantly with phosphorylation appears to be dependent upon phosphate incorporation into both the alpha- and beta-subunits. At low levels of activation a close correlation is observed between activation and either alpha-subunit phosphorylation, beta-subunit phosphorylation, or total phosphorylation. However, the cAMP-dependent catalyzed phosphorylation of alpha, at a time after which beta-subunit phosphorylation is already maximal, also results in activation of cardiac phosphorylase kinase.  相似文献   

14.
When phosphorylase kinase from rabbit skeletal muscle was activated by phosphorylation and then cross-linked with 1,5-difluoro-2,4-dinitrobenzene at pH 6.8, dimers of beta subunits were formed that were not observed during cross-linking of nonphosphorylated enzyme under the same conditions. The ability to form these dimers was due to phosphorylation of the beta subunit because when enzyme phosphorylated in the alpha and beta subunits was incubated with a protein phosphatase relatively specific for the beta subunit (Ganapathi, M.K., Silberman, S.R., Paris, H., and Lee, E.Y.C. (1981) J. Biol. Chem. 256, 3213-3217), the ability to form the cross-linked beta dimers was lost. Significant amounts of two complexes also judged to be dimers of beta subunits were observed when nonphosphorylated phosphorylase kinase was cross-linked after preincubation with Ca2+ plus Mg2+ ions, after proteolysis by chymotrypsin, or when it was cross-linked at pH 8.2, three conditions known to stimulate the activity of the nonphosphorylated enzyme. From these results, we conclude that 1,5-difluoro-2,4-dinitrobenzene can serve as a structural probe for activated states of phosphorylase kinase. The activation is associated with a conformational change in which two beta subunits either move closer together or have a reactive group on one, or both, of them unmasked. Our results suggest that the diverse mechanisms listed above for stimulating phosphorylase kinase activity cause a common conformational change to occur.  相似文献   

15.
Rabbit skeletal muscle glycogen synthase was phosphorylated by kinase Fa, phosphorylase kinase, and cAMP-independent synthase (casein) kinase-1 to determine the differences among these kinase-catalyzed reactions. The stoichiometry of phosphate incorporation, the extent of inactivation, and the sites of phosphorylation were compared. Synthase (casein) kinase-1 catalyzes the highest level of synthase phosphorylation (4 mol/subunit) and inactivation (reduction of the activity ratio to below 0.05). The sites, defined by characteristic tryptic peptides, phosphorylated by synthase (casein) kinase-1 are distinguishable from those by kinase Fa and phosphorylase kinase. In addition, synthase (casein) kinase-1, unlike kinase Fa, does not activate ATP X Mg2+-dependent protein phosphatase. These results demonstrate that synthase (casein) kinase-1 is a distinct glycogen synthase kinase.  相似文献   

16.
Phosphorylase kinase purified from rabbit skeletal muscle was ADP-ribosylated by hen liver nuclear ADP-ribosyltransferase. This modification, as was seen in cAMP-dependent phosphorylation, was observed only in alpha and beta subunits of the phosphorylase kinase and the latter was more rapidly modified. Analysis of the ADP-ribosylated amino acid residue sequenced in alpha and beta subunits showed that both subunits were modified at the area of the arginine residue. The Km for NAD was 0.10 mM and the pH optimum was 9.0. When the ADP-ribosylated phosphorylase kinase was phosphorylated by cAMP-dependent protein kinase, a reduction in phosphate incorporation occurred with increase in the ADP-ribosylation. ADP-ribosylation also suppressed autophosphorylation, to a lesser degree than observed with cAMP-dependent phosphorylation. The ADP-ribosylation-dependent reduction of phosphorylation resulted in a suppression of the phosphorylation-dependent activation of the phosphorylase kinase. These results together with findings of ADP-ribosyltransferase activity in the rabbit skeletal muscle [Soman, G. et al. (1984) Biochem. Biophys. Res. Commun. 120, 973-980] suggest that ADP-ribosylation participates in the regulation of the phosphorylase kinase activity through changes in the rate of phosphorylation.  相似文献   

17.
The phosphorylation of phosphorylase kinase by cyclic AMP-dependent protein kinase (A-kinase) is stimulated approximately 2-fold by spermine and spermidine. Half maximal effects were observed at 10 microM and 150 microM of spermine and spermidine, respectively. The phosphorylations of other substrates of A-kinase such as glycogen synthase, histone, and casein are not stimulated by these two polyamines. The rates, but not the final extents, of phosphorylation of both the alpha and beta subunits of phosphorylase kinase by A-kinase are stimulated by spermine. The results indicate that spermine and spermidine may play an important role in the activation of glycogenolysis in skeletal muscle.  相似文献   

18.
The subunits of phosphorylase kinase are separated and isolated in high yield by gel filtration chromatography in pH 3.3 phosphate buffer containing 8 M urea. Three protein peaks are obtained: the alpha and beta subunits coelute in the first, whereas the gamma and delta subunits are separate peaks. Upon dilution of the denaturant, catalytic activity reappears, associated only with the gamma subunit. As has been previously observed (Kee, S.M., and Graves, D.J. (1986) J. Biol. Chem. 261, 4732-4737), addition of calmodulin dramatically stimulates the reactivation of gamma. Inclusion of increasing amounts of the alpha/beta subunit mixture in the renaturation progressively decreases the activity of the renatured gamma or gamma-calmodulin. This inhibition by alpha/beta is likely due to specific interactions with the gamma subunit because the inhibition is less at pH 8.2 than at pH 6.8 and less when equivalent amounts of phosphorylated alpha/beta subunits are used (both alkaline pH and phosphorylation are known to stimulate the activity of the holoenzyme). These results suggest that the role of either the alpha or beta subunits, or perhaps both, in the nonactivated (alpha 2 beta 2 gamma 2 delta 2)2 complex of phosphorylase kinase is to suppress the activity of the gamma subunit and that activation of the enzyme, by phosphorylation for instance, is due to deinhibition caused by release of this quaternary constraint by alpha and/or beta upon gamma.  相似文献   

19.
A high Mr complex isolated from rabbit reticulocytes contains valyl-tRNA synthetase and the four subunits of elongation factor 1 (EF-1). Previously, valyl-tRNA synthetase and the alpha, beta, and delta subunits of EF-1 were shown to be phosphorylated in reticulocytes in response to phorbol 12-myristate 13-acetate (PMA). Phosphorylation of the complex was accompanied by an increase in both valyl-tRNA synthetase and EF-1 activity (Venema, R. C., Peters, H. I., and Traugh, J. A. (1991) J. Biol. Chem., 266, 11993-11998). To investigate phosphorylation of the valyl-tRNA synthetase EF-1 complex in vitro by protein kinase C, the complex has been purified to apparent homogeneity from rabbit reticulocytes by gel filtration on Bio-Gel A-5m, affinity chromatography on tRNA-Sepharose, and fast protein liquid chromatography on Mono Q. Valyl-tRNA synthetase and the beta and delta subunits of EF-1 in the complex are highly phosphorylated by protein kinase C (0.5-0.9 mol of phosphate/mol of subunit), while EF-1 alpha is phosphorylated to a lesser extent (0.2 mol/mol). However, the isolated EF-1 alpha subunit is highly phosphorylated (2.0 mol/mol). Phosphopeptide mapping of EF-1 alpha shows that the same sites are modified by protein kinase C in vitro and in PMA-treated cells. Phosphorylation of the valyl-tRNA synthetase.EF-1 complex results in a 3-fold increase in activity of EF-1 as measured by poly(U)-directed polyphenylalanine synthesis; no effect of phosphorylation is detected with valyl-tRNA synthetase and isolated EF-1 alpha. Thus, phosphorylation and activation of EF-1 by protein kinase C, which has been shown to occur in vitro as well as in reticulocytes, may have a role in PMA stimulation of translational rates.  相似文献   

20.
The present study was undertaken to determine the ability of protein kinase C and protein kinase A to directly phosphorylate the purified alpha 1- and beta 2-adrenergic receptors (AR). Both the catalytic subunit of protein kinase A and the protein kinase C, purified from bovine heart and pig brain, respectively, are able to phosphorylate the purified alpha 1-AR from DDT1 MF-2 smooth muscle cells. Occupancy of the receptor by an alpha 1 agonist, norepinephrine (100 microM), increases the rate of phosphorylation by protein kinase C but not by protein kinase A. The maximum stoichiometry of phosphorylation obtained is not affected by the agonist and reached 3 mol of PO4/mol of receptor for protein kinase C and 1 mol of PO4/mol of receptor for protein kinase A. The phosphopeptide maps of the trypsinized alpha 1-AR phosphorylated by each kinase differ drastically. The beta 2-AR purified from hamster lungs can also be phosphorylated by the two kinases. In contrast to the alpha 1-AR, the occupancy of the beta 2-AR by the agonist isoproterenol (20 microM) increases the rate of phosphorylation of the beta 2-AR by protein kinase A but not by protein kinase C. The maximum amount of phosphate incorporated into the receptor is not affected in either case by the agonist and reaches 1 mol of PO4/mol of receptor with protein kinase A and 0.4 mol of PO4/mol of receptor with protein kinase C. The phosphopeptide maps of the trypsinized receptor phosphorylated by either kinase reveal similar profiles. Thus, both alpha 1-AR and beta 2-AR are substrates for protein kinase A and protein kinase C. Agonist occupancy of the two receptors facilitates their phosphorylation only by the protein kinase coupled to their own signal transduction pathway. These observations suggest that "feedback" and "cross-system" phosphorylation may represent distinct and differently regulated mechanisms of modulation of receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号