首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ~2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.  相似文献   

2.
The fungus Magnaporthe oryzae is a serious pathogen of rice and other grasses. Telomeric restriction fragments in Magnaporthe isolates that infect perennial ryegrass (prg) are hotspots for genomic rearrangement and undergo frequent, spontaneous alterations during fungal culture. The telomeres of rice-infecting isolates are very stable by comparison. Sequencing of chromosome ends from a number of prg-infecting isolates revealed two related non-LTR retrotransposons (M. oryzae Telomeric Retrotransposons or MoTeRs) inserted in the telomere repeats. This contrasts with rice pathogen telomeres that are uninterrupted by other sequences. Genetic evidence indicates that the MoTeR elements are responsible for the observed instability. MoTeRs represent a new family of telomere-targeted transposons whose members are found exclusively in fungi.  相似文献   

3.
Light is a major environmental factor that influences many biological processes. We characterized the roles of light in asexual development (including the formation of aerial hyphae and conidiophore) in Magnaporthe oryzae, which is the causal agent of rice blast disease. Our data revealed a complex nature of light regulation in the asexual developments of M. oryzae. Asexual development of M. oryzae is suppressed by blue light in a light/dark cycling environment and asexual spore release is controlled by both blue and red light. We demonstrated that even very dim light, about 10 micromol m(-2), is sufficient to suppress spore-release behavior in M. oryzae. We also generated knockout strains of a blue light receptor, mgwc-1, the M. oryzae homolog of white collar-1 in Neurospora crassa, and demonstrated blue-light-specific regulation in the asexual development and spore release in M. oryzae. Our findings in this agriculturally important pathogen, M. oryzae, broaden our understanding of the roles of light in fungal development.  相似文献   

4.
The protein kinase Snf1 is a major component of the glucose derepression pathway in yeast and a regulator of gene expression for the cell wall degrading enzyme (CWDE) in some plant pathogenic fungi. To address the molecular function of Snf1 in Magnaporthe oryzae, which causes the rice blast disease, MoSNF1 was cloned and functionally characterized using gene knock-out strategies. MoSNF1 functionally complemented the growth defect of the yeast snf1 mutant on a non-fermenting carbon source. However, the growth rate of the Δmosnf1 mutant on various carbon sources was reduced independent of glucose, and the expression of the CWDE genes in the mutant was induced during derepressing condition like the wild type. The pre-penetration stage including conidial germination and appressorium formation of the Δmosnf1 was largely impaired, and the pathogenicity of the Δmosnf1 was significantly reduced. Most strikingly, the Δmosnf1 mutant produced only a few conidia and had a high frequency of abnormally shaped conidia compared to the wild type. Our results suggest that MoSNF1 is a functional homolog of yeast Snf1, but its contribution to sporulation, vegetative growth and pathogenicity is critical in M. oryzae.  相似文献   

5.
He M  Kershaw MJ  Soanes DM  Xia Y  Talbot NJ 《PloS one》2012,7(3):e33270

Background

The rice blast fungus Magnaporthe oryzae elaborates a specialized infection structure called an appressorium to breach the rice leaf surface and gain access to plant tissue. Appressorium development is controlled by cell cycle progression, and a single round of nuclear division occurs prior to appressorium formation. Mitosis is always followed by programmed cell death of the spore from which the appressorium develops. Nuclear degeneration in the spore is known to be essential for plant infection, but the precise mechanism by which it occurs is not known.

Methodology/Principal Findings

In yeast, nuclear breakdown requires a specific form of autophagy, known as piecemeal microautophagy of the nucleus (PMN), and we therefore investigated whether this process occurs in the rice blast fungus. Here, we report that M. oryzae possesses two conserved components of a putative PMN pathway, MoVac8 and MoTsc13, but that both are dispensable for nuclear breakdown during plant infection. MoVAC8 encodes a vacuolar membrane protein and MoTSC13 a peri-nuclear and peripheral ER protein.

Conclusions/Significance

We show that MoVAC8 is necessary for caffeine resistance, but dispensable for pathogenicity of M. oryzae, while MoTSC13 is involved in cell wall stress responses and is an important virulence determinant. By functional analysis of ΔMoatg1 and ΔMoatg4 mutants, we demonstrate that infection-associated nuclear degeneration in M. oryzae instead occurs by non-selective macroautophagy, which is necessary for rice blast disease.  相似文献   

6.
7.
8.
9.
10.
11.
The interaction between rice, Oryza sativa, and rice blast fungus, Magnaporthe oryzae, is triggered by an interaction between the protein products of the host resistant gene, and the pathogen avirulence gene. This interaction follows the ‘gene-for-gene' concept. The resistant gene has effectively protected rice plants from rice blast infection. However, the resistant genes usually break down several years after the release of the resistant rice varieties because the fungus has evolved to new races. The objective of this study is to investigate the nucleotide sequence variation of the AVR-Pita1 gene that influences the adaption of rice blast fungus to overcome the resistant gene, Pi-ta. Thirty rice blast fungus isolates were collected in 2005 and 2010 from infected rice plants in northern and northeastern Thailand. The nucleotide sequences of AVR-Pita1 were amplified and analyzed. Phylogenetic analysis was conducted using the MEGA 5.0 program. The results showed a high level of nucleotide sequence polymorphisms and the positive genetic selection pressure in Thai rice blast isolates. The details of sequence variation analysis were described in this article. The information from this study can be used for rice blast resistant breeding program in the future.  相似文献   

12.
13.
14.
Sexual reproduction may be cryptic or facultative in fungi and therefore difficult to detect. Magnaporthe oryzae, which causes blast, the most damaging fungal disease of rice, is thought to originate from southeast Asia. It reproduces asexually in all rice‐growing regions. Sexual reproduction has been suspected in limited areas of southeast Asia, but has never been demonstrated in contemporary populations. We characterized several M. oryzae populations worldwide both biologically and genetically, to identify candidate populations for sexual reproduction. The sexual cycle of M. oryzae requires two strains of opposite mating types, at least one of which is female‐fertile, to come into contact. In one Chinese population, the two mating types were found to be present at similar frequencies and almost all strains were female‐fertile. Compatible strains from this population completed the sexual cycle in vitro and produced viable progenies. Genotypic richness and linkage disequilibrium data also supported the existence of sexual reproduction in this population. We resampled this population the following year, and the data obtained confirmed the presence of all the biological and genetic characteristics of sexual reproduction. In particular, a considerable genetic reshuffling of alleles was observed between the 2 years. Computer simulations confirmed that the observed genetic characteristics were unlikely to have arisen in the absence of recombination. We therefore concluded that a contemporary population of M. oryzae, pathogenic on rice, reproduces sexually in natura in southeast Asia. Our findings provide evidence for the loss of sexual reproduction by a fungal plant pathogen outside its centre of origin.  相似文献   

15.
16.
The rice blast fungus Magnaporthe oryzae is a global food security threat due to its destruction of cultivated rice. Of the world's rice harvest, 10–30 % is lost each year to this pathogen, and changing climates are likely to favor its spread into new areas. Insights into how the fungus might be contained could come from the wealth of molecular and cellular studies that have been undertaken in order to shed light on the biological underpinnings of blast disease, aspects of which we review herein. Infection begins when a three-celled spore lands on the surface of a leaf, germinates, and develops the specialized infection structure called the appressorium. The mature appressorium develops a high internal turgor that acts on a thin penetration peg, forcing it through the rice cuticle and into the underlying epidermal cells. Primary then invasive hyphae (IH) elaborate from the peg and grow asymptomatically from one living rice cell to another for the first few days of infection before host cells begin to die and characteristic necrotic lesions form on the surface of the leaf, from which spores are produced to continue the life cycle. To gain new insights into the biology of rice blast disease, we argue that, conceptually, the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the host cell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus. Here, we review the physiological and metabolic changes that occur in M. oryzae as it transitions from the surface to the interior of the host, thus enabling us to draw lessons about the strategies that allow M. oryzae cells to thrive in rice cells.  相似文献   

17.
Chitin is a component of fungal cell walls, and its fragments act as elicitors in many plants. The plasma membrane glycoprotein CEBiP, which possesses LysM domains, is a receptor for the chitin elicitor (CE) in rice. Here, we report that the perception of CE by CEBiP contributes to disease resistance against the rice blast fungus, Magnaporthe oryzae, and that enhanced responses to CE by engineering CEBiP increase disease tolerance. Knockdown of CEBiP expression allowed increased spread of the infection hyphae. To enhance defense responses to CE, we constructed chimeric genes composed of CEBiP and Xa21, which mediate resistance to rice bacterial leaf blight. The expression of either CRXa1 or CRXa3, each of which contains the whole extracellular portion of CEBiP, the whole intracellular domain of XA21, and the transmembrane domain from either CEBiP or XA21, induced cell death accompanied by an increased production of reactive oxygen and nitrogen species after treatment with CE. Rice plants expressing the chimeric receptor exhibited necrotic lesions in response to CE and became more resistant to M. oryzae. Deletion of the first LysM domain in CRXA1 abolished these cellular responses. These results suggest that CEs are produced and recognized through the LysM domain of CEBiP during the interaction between rice and M. oryzae and imply that engineering pattern recognition receptors represents a new strategy for crop protection against fungal diseases.  相似文献   

18.
Infection-related development in the rice blast fungus Magnaporthe grisea   总被引:8,自引:0,他引:8  
Recent developments have been made in the identification of signal transduction pathways and gene products involved in the infection-related development of the rice blast fungus, Magnaporthe grisea. It has been established that cAMP-dependent and MAP kinase-mediated signaling are both critical for appressorium morphogenesis and function. These signaling pathways may act downstream of hydrophobin-mediated surface sensing by the growing germ tube. Several genes have been identified that are required for invasive growth of M. grisea including genes that allow adaptation of fungal metabolism to growth within plant tissues.  相似文献   

19.
Ma  Xiaoqing  Duan  Guihua  Chen  Hongfeng  Tang  Ping  Su  Shunyu  Wei  Zhaoxia  Yang  Jing 《Plant molecular biology》2022,110(3):219-234
Plant Molecular Biology - Identification of infection process and defense response during M. oryzae infecting Acuce. Magnaporthe oryzae is a destructive rice pathogen. Recent studies have focused...  相似文献   

20.
Rice blast, caused by Magnaporthe oryzae (synonym: Pyricularia oryzae), severely reduces rice production and grain quality. The molecular mechanism of rice resistance to M. oryzae is not fully understood. In this study, we identified a chaperone DnaJ protein, OsDjA6, which is involved in basal resistance to M. oryzae in rice. The OsDjA6 protein is distributed in the entire rice cell. The expression of OsDjA6 is significantly induced in rice after infection with a compatible isolate. Silencing of OsDjA6 in transgenic rice enhances resistance to M. oryzae and also results in an increased burst of reactive oxygen species after flg22 and chitin treatments. In addition, the expression levels of WRKY45, NPR1 and PR5 are increased in OsDjA6 RNAi plants, indicating that OsDjA6 may mediate resistance by affecting the salicylic acid pathway. Finally, we found that OsDjA6 interacts directly with the E3 ligase OsZFP1 in vitro and in vivo. These results suggest that the DnaJ protein OsDjA6 negatively regulates rice innate immunity, probably via the ubiquitination proteasome degradation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号