首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Rhythmic gene expression in somite formation and neural development   总被引:1,自引:0,他引:1  
In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.  相似文献   

2.
Vertebrae and ribs arise from embryonic tissues called somites. Somites arise sequentially from the unsegmented embryo tail, called presomitic mesoderm (PSM). The pace of somite formation is controlled by gene products such as hairy and enhancer of split 7 (Hes7) whose expression oscillates in the PSM. In addition to the cyclic genes, there is a gradient of fibroblast growth factor 8 (Fgf8) mRNA from posterior to anterior PSM. Recent experiments have shown that in the absence of Fgf signaling, Hes7 oscillations in the anterior and posterior PSM are lost. On the other hand, Notch mutants reduce the amplitude of posterior Hes7 oscillations and abolish anterior Hes7 oscillations. To understand these phenotypes, we delineated and simulated a logical and a delay differential equation (DDE) model with similar network topology in wild-type and mutant situations. Both models reproduced most wild-type and mutant phenotypes suggesting that the chosen topology is robust to explain these phenotypes. Numerical continuation of the model showed that even in the wild-type situation, the system changed from sustained to damped, i.e. a Hopf bifurcation occurred, when the Fgf concentration decreased in the PSM. This numerical continuation analysis further indicated that the most sensitive parameters for the oscillations are the parameters of Hes7 followed by those of Lunatic fringe (Lfng) and Notch1. In the wild-type, the damping of Hes7 oscillations was not so strong so that cells reached the new somites before they lose Hes7 oscillations. By contrast, in the fibroblast growth factor receptor 1 (Fgfr1) conditional knock-out (cKO) mutant simulation, Notch signaling was not able to maintain sustained Hes7 oscillations. Our analysis suggests that Fgf signaling makes cells enter an oscillatory state of Hes7 expression. After moving to the anterior PSM, where Fgf signaling is missing, Notch signaling compensates the damping of Hes7 oscillations in the anterior PSM.  相似文献   

3.
Oscillations in notch signaling regulate maintenance of neural progenitors   总被引:3,自引:0,他引:3  
Shimojo H  Ohtsuka T  Kageyama R 《Neuron》2008,58(1):52-64
Expression of the Notch effector gene Hes1 is required for maintenance of neural progenitors in the embryonic brain, but persistent and high levels of Hes1 expression inhibit proliferation and differentiation of these cells. Here, by using a real-time imaging method, we found that Hes1 expression dynamically oscillates in neural progenitors. Furthermore, sustained overexpression of Hes1 downregulates expression of proneural genes, Notch ligands, and cell cycle regulators, suggesting that their proper expression depends on Hes1 oscillation. Surprisingly, the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta-like1 (Dll1) are also expressed in an oscillatory manner by neural progenitors, and inhibition of Notch signaling, a condition known to induce neuronal differentiation, leads to downregulation of Hes1 and sustained upregulation of Ngn2 and Dll1. These results suggest that Hes1 oscillation regulates Ngn2 and Dll1 oscillations, which in turn lead to maintenance of neural progenitors by mutual activation of Notch signaling.  相似文献   

4.
5.
Notch signaling regulates intestinal development, homeostasis and tumorigenesis, but its precise downstream mechanism remains largely unknown. Here we found that inactivation of the Notch effectors Hes1, Hes3 and Hes5, but not Hes1 alone, led to reduced cell proliferation, increased secretory cell formation and altered intestinal structures in adult mice. However, in Apc mutation-induced intestinal tumors, inactivation of Hes1 alone was sufficient for reducing tumor cell proliferation and inducing differentiation of tumor cells into all types of intestinal epithelial cells, but without affecting the homeostasis of normal crypts owing to genetic redundancy. These results indicated that Hes genes cooperatively regulate intestinal development and homeostasis and raised the possibility that Hes1 is a promising target to induce the differentiation of tumor cells.  相似文献   

6.
Mammalian spermatogenesis is a highly regulated system dedicated to the continuous production of spermatozoa from spermatogonial stem cells, and the process largely depends on microenvironments created by Sertoli cells, unique somatic cells that reside within a seminiferous tubule. Spermatogenesis progresses with a cyclical program known as the "seminiferous epithelial cycle," which is accompanied with cyclical gene expression changes in Sertoli cells. However, it is unclear how the cyclicity in Sertoli cells is regulated. Here, we report that Notch signaling, which is known to play an important role for germ cell development in Drosophila and Caenorhabditis elegans, is cyclically activated in Sertoli cells and regulates stage-dependent gene expression of Hes1. To elucidate the regulatory mechanism of stage-dependent Hes1 expression and the role of Notch signaling in mouse spermatogenesis, we inactivated Notch signaling in Sertoli cells by deleting protein O-fucosyltransferase 1 (Pofut1), using the cre-loxP system, and found that stage-dependent Hes1 expression was dependent on the activation of Notch signaling. Unexpectedly, however, spermatogenesis proceeded normally. Our results thus indicate that Notch signaling regulates cyclical gene expression in Sertoli cells but is dispensable for mouse spermatogenesis. This highlights the evolutionary divergences in regulation of germ cell development.  相似文献   

7.
Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1(CreERT2) knock-in allele to inducibly mark Hes1(+) cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1(+) cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta (β)-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.  相似文献   

8.
Notch signalling molecules, such as the basic helix-loop-helix factors Hes1 and Hes7, periodically change their expression in the presomitic mesoderm, and each cycle of gene expression is associated with somite formation (every two hours in mouse). This cyclic expression is the manifestation of an intrinsic mechanism, called the segmentation clock, which is essential for coordinated somite segmentation. Interestingly, the oscillatory expression of Hes1 is observed in many cell types after serum stimulation, suggesting that this ultradian clock is not unique to presomitic mesoderm cells but widely distributed. This oscillation depends on the negative feedback loop, and once its promoter is constitutively activated, Hes1 seems to start oscillatory gene expression autonomously. Thus, Hes1 acts as a device that transduces a direct current of input into an alternating current, which ticks the hours in many biological systems.  相似文献   

9.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.  相似文献   

10.
11.
Otic neuronal precursors are the first cells to be specified and do so in the anterior domain of the otic placode, the proneural domain. In the present study, we have explored the early events of otic proneural regionalization in relation to the activity of the Notch signaling pathway. The proneural domain was characterized by the expression of Sox3, Fgf10 and members of the Notch pathway such as Delta1, Hes5 and Lunatic Fringe. The complementary non-neural domain expressed two patterning genes, Lmx1b and Iroquois1, and the members of the Notch pathway, Serrate1 and Hairy1. Fate map studies and double injections with DiI/DiO showed that labeled cells remained confined to anterior or posterior territories with limited cell intermingling. To explore whether Notch signaling pathway plays a role in the initial regionalization of the otic placode, Notch activity was blocked by a gamma-secretase inhibitor (DAPT). Notch blockade induced the expansion of non-neural genes, Lmx1 and Iroquois1, into the proneural domain. Combined gene expression and DiI experiments showed that these effects were not due to migration of non-neural cells into the proneural domain, suggesting that Notch activity regulates the expression of non-neural genes. This was further confirmed by the electroporation of a dominant-negative form of the Mastermind-like1 gene that caused the up-regulation of Lmx1 within the proneural domain. In addition, Notch pathway was involved in neuronal precursor selection, probably by a classical mechanism of lateral inhibition. We propose that the regionalization of the otic domain into a proneural and a non-neural territory is a very early event in otic development, and that Notch signaling activity is required to exclude the expression of non-neural genes from the proneural territory.  相似文献   

12.
The orphan nuclear receptor COUP-TFI (Nr2f1) regulates many aspects of mammalian development, but little is known about its role in cochlear hair cell and Deiter's support cell development. The COUP-TFI knockout (COUP-TFI(-/-)) has a significant increase in hair cell (HC) number in the mid-to-apical turns. The total number of hair cells is not increased over wild type, perhaps because of displaced hair cells and a shortened cochlear duct. This implicates a defect of convergent-extension in the COUP-TFI(-/-) duct. In addition, excess proliferation in the COUP-TFI(-/-) sensory epithelium indicates that the origin of the extra HCs in the apex is complex. Because loss-of-function studies of Notch signaling components have similar phenotypes, we investigated Notch regulation of hair cell differentiation in COUP-TFI(-/-) mice and confirmed misregulation of Notch signaling components, including Jag1, Hes5 and in a manner consistent with reduced Notch signaling, and correlated with increases in hair cell and support cell differentiation. The disruption of Notch signaling by a gamma-secretase inhibitor in an in vitro organ culture system of wild-type cochleae resulted in a reduction in expression of the Notch target gene Hes5 and an increase in hair cell differentiation. Importantly, inhibition of Notch activity resulted in a greater increase in hair cell differentiation in COUP-TFI(-/-) cochlear cultures than in wild-type cultures, suggesting a hypersensitivity to Notch inactivation in COUP-TFI(-/-) cochlea, particularly at the apical turn. Thus, we present evidence that reduced Notch signaling contributes to increases in hair cell and support cell differentiation in COUP-TFI(-/-) mice, and suggest that COUP-TFI is required for Notch regulation of hair cell and support cell differentiation.  相似文献   

13.
Uremia largely results from the accumulation of organic waste products normally cleared by the kidneys, which commonly accompanies kidney failure and chronic kidney disease. However, genetic investigations in a uremia remain largely unclear. This study aimed to determine the expression patterns of distal-less homeobox 5 (DLX5) in uremia rat model and further to study its effects on glomerulosclerosis and interstitial fibrosis. Uremic expression chip was applied to screen differentially expressed genes in uremia. Next, we used small interfering RNA-mediated RNA interference to specifically silence DLX5 in experimental uremic rats to understand the regulatory mechanism of DLX5. To understand effect of Notch1 signaling pathway in uremia, we also treated experimental uremic rats with γ-secretase inhibitor (GSI), an inhibitor of Notch1 signaling pathway. The expression of fibronectin (FN), laminin (LN), transforming growth factor-β1 (TGF-β1), Hes1, Hes5, and Jagged2 was determined. The semiquantitative assessment was applied to verify the effects of DLX5 on glomerulosclerosis. In the uremic expression chip, we found that DLX5 was upregulated in uremia samples, and considered to regulate the Notch signaling pathway. We found that small interfering RNA-mediated DLX5 inhibition or Notch1 signaling pathway inhibitory treatment relieved and delayed the kidney injury and glomerulosclerosis in uremia. Meanwhile, inhibition of DLX5 or Nothch1 signaling pathway reduced expression of FN, LN, Nothch1, TGF-β1, Hes1, Hes5, and Jagged2. Intriguingly, we discovered that Notch1 signaling pathway was inhibited after silencing DLX5. In conclusion, these findings highlight that DLX5 regulates Notch signaling, which may, in turn, promote complications of uremia such as kidney fibrosis, providing a novel therapeutic target for treating uremia.  相似文献   

14.
15.
Recent studies have shown that Notch signaling plays an important role in epidermal development, but the underlying molecular mechanisms remain unclear. Here, by integrating loss- and gain-of-function studies of Notch receptors and Hes1, we describe molecular information about the role of Notch signaling in epidermal development. We show that Notch signaling determines spinous cell fate and induces terminal differentiation by a mechanism independent of Hes1, but Hes1 is required for maintenance of the immature state of spinous cells. Notch signaling induces Ascl2 expression to promote terminal differentiation, while simultaneously repressing Ascl2 through Hes1 to inhibit premature terminal differentiation. Despite the critical role of Hes1 in epidermal development, Hes1 null epidermis transplanted to adult mice showed no obvious defects, suggesting that this role of Hes1 may be restricted to developmental stages. Overall, we conclude that Notch signaling orchestrates the balance between differentiation and immature programs in suprabasal cells during epidermal development.  相似文献   

16.
Notch signaling plays a pivotal role in the regulation of vertebrate neurogenesis. However, in vitro experiments suggest that Notch1 may also be involved in the regulation of later stages of brain development. We have addressed putative roles in the central nervous system by examining the expression of Notch signaling cascade components in the postnatal mouse brain. In situ mRNA hybridization revealed that Notch1 is associated with cells in the subventricular zone, the dentate gyrus and the rostromigratory stream, all regions of continued neurogenesis in the postnatal brain. In addition, Notch1 is expressed at low levels throughout the cortex and olfactory bulb and shows striking expression in the cerebellar Purkinje cell layer. The Notch ligands, including Delta-like1 and 3 and Jagged1 and Jagged2, show distinct expression patterns in the developing and adult brain overlapping that of Notch1. In addition, the downstream targets of the Notch signaling cascade Hes1, Hes3, Hes5 and the intrinsic Notch regulatory proteins Numb and Numblike also show active signaling in distinct brain regions. Hes5 coincides with the majority of Notch1 expression and can be detected in the cerebral cortex, cerebellum and putative germinal zones. Hes3, on the other hand, shows a restricted expression in cerebellar Purkinje cells. The distribution of Notch1 and its putative ligands suggest distinct roles in specific subsets of cells in the postnatal brain including putative stem cells and differentiated neurons.  相似文献   

17.
18.
The temporal and spatial regulation of somitogenesis requires a molecular oscillator, the segmentation clock. Through Notch signalling, the oscillation in cells is coordinated and translated into a cyclic wave of expression of hairy-related and other genes. The wave sweeps caudorostrally through the presomitic mesoderm (PSM) and finally arrests at the future segmentation point in the anterior PSM. By experimental manipulation and analyses in zebrafish somitogenesis mutants, we have found a novel component involved in this process. We report that the level of Fgf/MAPK activation (highest in the posterior PSM) serves as a positional cue within the PSM that regulates progression of the cyclic wave and thereby governs the positions of somite boundary formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号