首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells are the most popular host cells for transient gene expression (TGE) of therapeutic proteins. These host cells require high transfection efficiency in order to enhance TGE. Heparan sulfate proteoglycan (HSPG) at the cell surface is known to regulate endocytosis for gene delivery. The HSPG expression in CHO DG44 and HEK293E cells was investigated in an effort to enhance the TGE. Immunostaining of HSPGs followed by confocal microscopy and flow cytometry analyses revealed that CHO DG44 cells possessed a higher amount of cell-surface and intracellular HSPGs than HEK293E cells. The mRNA levels of the representative enzymes involved in the HSPG biosynthesis in CHO DG44, which were determined by quantitative real time PCR, were quite different from those in HEK293E cells. Taken together, the results obtained here would be useful in improving TGE in CHO DG44 and HEK293E cells through genetic engineering of HSPG synthesis.  相似文献   

2.
Various DNA methyl transferase inhibitors (iDNMTs) and histone deacetylase inhibitors (iHDACs) were screened for their ability to enhance transient gene expression (TGE) in Human Embryonic Kidney 293-EBNA (HEK293E) cells. The effects in HEK293E cells were compared to those in Chinese Hamster Ovary DG44 (CHO-DG44) cells. The iDNMTs and iHDACs were chosen based on their different cellular activities and mechanisms of action. For each inhibitor tested, the optimum concentration was determined for both cell lines, and these conditions were used to evaluate the effect of each compound using a recombinant monoclonal antibody as a reporter protein. All the iHDACs increased transient antibody yield at least 4-fold in HEK293E and at least 1.5-fold in CHO-DG44. By comparison, the iDNMTs increased antibody yields by a maximum of approximately 2-fold. Pairwise combinations of iDNMTs and iHDACs had a linearly additive effect on TGE in CHO-DG44 but not in HEK293E. With valproic acid (VPA), volumetric and specific productivities of 200 mg/L and 20 pg/cell/day, respectively, were achieved in HEK293E cells with a 10-day process. As VPA is both FDA-approved and 5-fold less expensive than sodium butyrate (NaBut), we recommend it as a cost-effective alternative to this widely used enhancer of recombinant protein production from mammalian cells.  相似文献   

3.
Human embryonic kidney 293 (HEK293) cells with glycosylation machinery have emerged as an alternative host cell line for stable expression of therapeutic glycoproteins. To characterize dihydrofolate reductase/methotrexate (DHFR/MTX)-mediated gene amplification in HEK293 cells, an expression vector containing dhfr and monoclonal antibody (mAb) gene was transfected into dhfr-deficient HEK293 cells generated by knocking out dhfr and dhfrl1 in HEK293E cells. Due to the improved selection stringency, mAb-producing parental cell pools could be generated in the absence of MTX. When subjected to stepwise selection for increasing MTX concentrations such as 1, 10, and 100 nM, there was an increase in the specific mAb productivity (qmAb) of the parental cell pool upon DHFR/MTX-mediated gene amplification. High producing (HP) clones with a qmAb of more than 2-fold of the corresponding cell pool could be obtained using the limiting dilution method. The qmAb of most HP clones obtained from cell pools at elevated MTX concentrations significantly decreased during long-term culture (3 months) in the absence of selection pressure. However, some HP clones could maintain high qmAb during long-term culture. Taken together, a stable HP recombinant HEK293 cell line can be established using DHFR/MTX-mediated gene amplification together with dhfr HEK293 host cells.  相似文献   

4.
5.
In an attempt to determine the relationship between the Epstein–Barr virus nuclear antigen-1 (EBNA-1) expression level and specific foreign protein productivity (qp), EBNA-1-amplifed HEK293 cells, which achieved a higher EBNA-1 expression level than that achieved by HEK293E cells, were established using dihydrofolate reductase (dhfr)-mediated gene amplification. Compared with a control culture in a null pool, Fc-fusion protein production by transient transfection in the EBNA-1-amplified pool showed a significant improvement. qp was linearly correlated with the EBNA-1 expression level in the transient transfection of EBNA-1-amplified clones, as indicated by the correlation coefficient (R2 = 0.7407). The Fc-fusion protein production and qp in a transient gene expression-based culture with EBNA-1-amplified HEK293 cells, E-amp-68, were approximately 2.0 and 3.2 times, respectively, higher than those in a culture with HEK293E cells. The increase in qp by EBNA-1 amplification mainly resulted from an enhancement in the amount of replicated DNA and level of mRNA expression but not an improved transfection efficiency. Taken together, it was found that EBNA-1 amplification could improve the therapeutic protein production in an HEK293 cell-based transient gene expression system.  相似文献   

6.
The goals of this study were to identify mammalian cell lines which could be efficiently transiently-transfected and scaled-up for protein production. The transfection efficiencies of eight cell lines (NSO, NSO-TAg, CV-1, COS-7, CHO, CHO-TAg, HEK 293, and 293-EBNA) were measured using electroporation for DNA delivery and green fluorescent protein (Evans, 1996) as the reporter gene. In addition, we have evaluated the effects of stable expression of viral proteins, cell cycle manipulation, and butyrate post-treatment in small scale experiments. The cell lines varied widely in their GFP transfection efficiencies. Stable expression of simian virus 40 large T-antigen or Epstein Barr nuclear antigen failed to significantly increase transfection efficiency above that seen in the parental lines. Aphidicolin (a DNA polymerase inhibitor), which blocked cells from S or G2/M, brought about an increase in transfection efficiency in two cell lines. The primary effect of butyrate (a histone deacetylase inhibitor) post-treatment was an increased intensity of the fluorescent signal of green fluorescent protein, as measured by flow cytometry (1.0 to 4.2-fold, depending on the cell line). The combined use of aphidicolin pretreatment followed by butyrate treatment post- electroporation yielded increases in fluorescence intensities ranging from 0.9 to 6.8-fold. Based on their high transfection efficiencies in small scale experiments, rapid growth, and ability to grow in suspension culture, CHO, CHO-TAg, and 293-EBNA were selected to assess the feasibility of using flow electroporation for large-scale transfections. Using secreted placental alkaline phosphatase as a reporter, 293-EBNA cells produced the highest protein levels in both the presence and absence of butyrate. These data indicate that flow electroporation provides an efficient method of DNA delivery into large numbers of cells for mammalian protein production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
近年来越来越多的重组蛋白,尤其是单克隆抗体,作为生物药应用于医疗。临床及实验室研究中,经常要求在短时间内生产一定量的候选蛋白供应研究需求。经典的建立稳定细胞系生产重组蛋白过程复杂冗长,而作为替代方法,瞬时基因表达技术在数周内即可生产数十至数百毫克重组蛋白,得到广泛应用。本文将总结近年来工业及学术上,在哺乳动物细胞尤其是人胚胎肾细胞(HEK293)及中国仓鼠卵巢细胞(CHO)中瞬时表达重组蛋白的一系列研究,概述瞬时表达技术在宿主细胞改造、表达载体最优化设计、瞬时转染条件等方面的研究进展,并展望其未来发展方向。  相似文献   

8.
Transient gene expression (TGE) is a well-established enabling technology for rapid generation of recombinant proteins, with Human Embryonic Kidney (HEK) and Chinese Hamster Ovary (CHO) cell lines and polyethyleneimine (PEI) as the transfection reagent being its most popular components. However, despite considerable progress made in the field, volumetric titers can still be a limiting factor causing the manipulation of increasing quantities of culture media and DNA. Here, we report a systematic analysis of TGE conditions and their influence on yields and protein quality. Guided by Design of Experiments (DoE), we conclude that TGE yields with one test antibody can be maximized by a parallel increase of cell density - 2.4 to 3.0 × 10(6)cells/mL - and PEI concentration - 24 to 30 mg/L - while maintaining a 1:1 ratio of heavy chain and light chain encoding plasmids. Interestingly, we also show that in these conditions, DNA concentration can be maintained in the 1mg/L range, thereby limiting the need for large DNA preparations. Our optimized settings for PEI-mediated TGE in HEK and CHO cells evaluated on several proteins are generally applicable to recombinant antibodies and proteins.  相似文献   

9.
To find a more effective chemical reagent for improved monoclonal antibody (mAb) production, eight chemical reagents (curcumin, quercein, DL‐sulforaphane, thymidine, valeric acid, phenyl butyrate, valproic acid, and lithium chloride) known to induce cell cycle arrest were examined individually as chemical additives to recombinant CHO (rCHO) cell cultures producing mAb. Among these chemical additives, valeric acid showed the best production performance. Valeric acid decreased specific growth rate (μ), but increased culture longevity and specific mAb productivity (qmAb) in a dose‐dependent manner. The beneficial effect of valeric acid on culture longevity and qmAb outweighed its detrimental effect on μ, resulting in 2.9‐fold increase in the maximum mAb concentration when 1.5 mM valeric acid was added to the cultures. Furthermore, valeric acid did not negatively affect the mAb quality attributes with regard to aggregation, charge variation, and galactosylation. Unexpectedly, galactosylation of the mAb increased by the 1.5 mM valeric acid addition. Taken together, the results obtained here demonstrate that valeric acid is an effective chemical reagent to increase mAb production in rCHO cells.  相似文献   

10.
The effect of hyperosmolarity on transient recombinant protein production in Chinese hamster ovary (CHO) cells was investigated. Addition of 90 mM NaCl to the production medium ProCHO5 increased the volumetric yield of recombinant antibody up to 4-fold relative to transfection in ProCHO5 alone. Volumetric yields up to 50 mg l−1 were achieved in a 6 day batch culture of 3 l. In addition, hyperosmolarity reduced cell growth and increased cell size. The addition of salt to cultures of transiently transfected CHO cells is a simple and cost-effective method to increase TGE yields in this host.  相似文献   

11.
Transient gene expression (TGE) provides a method for quickly delivering protein for research using mammalian cells. While high levels of recombinant proteins have been produced in TGE experiments in HEK 293 cells, TGE efforts in the commercially prominent CHO cell line still suffer from inadequate protein yields. Here, we describe a cell-engineering strategy to improve transient production of proteins using CHO cells. CHO-DG44 cells were engineered to overexpress the anti-apoptotic protein Bcl-x(L) and transiently transfected using polyethylenimine (PEI) in serum-free media. Pools and cell lines stably expressing Bcl-x(L) showed enhanced viable cell density and increased production of a glycosylated, therapeutic fusion protein in shake flask TGE studies. The improved cell lines showed fusion protein production levels ranging from 12.6 to 27.0 mg/L in the supernatant compared to the control cultures which produced 6.3-7.3 mg/L, representing a 70-270% increase in yield after 14 days of fed-batch culture. All Bcl-xL-expressing cell lines also exhibited an increase in specific productivity during the first 8 days of culture. In addition to increased production, Bcl-x(L) cell lines maintained viabilities above 90% and less apoptosis compared to the DG44 host which had viabilities below 60% after 14 days. Product quality was comparable between a Bcl-xL-engineered cell line and the CHO host. The work presented here provides the foundation for using anti-apoptosis engineered CHO cell lines for increased production of therapeutic proteins in TGE applications.  相似文献   

12.
An alternating tangential flow (ATF) perfusion-based transient gene expression (TGE) bioprocess has been developed using human embryonic kidney (HEK) 293 cells to produce H1-ss-np, a promising candidate for a universal influenza vaccine. Two major adjustments were taken to improve the process: (1) eliminate the interference of microbubbles during gene transfection; and (2) utilize an ATF perfusion system for a prolonged culture period. As a result, a closed-operation 9-days ATF perfusion-based TGE bioprocess was developed. The TGE bioprocess showed continuous cell growth with high cell viability and prolonged cellular productivity that achieved recombinant product level of ~270 mg/L which was more than two times that of 4-days base-line TGE bioprocess. In addition, the consumables cost per milligram for ATF perfusion-based TGE bioprocess was ~70% lower than that of the base-line TGE bioprocess suggesting high cost savings potential in vaccine manufacturing. Based on the lower contamination risk, higher productivity, and cost efficiency, the ATF perfusion-based TGE bioprocess can likely provide potential benefits to many future applications in vaccine and drug manufacturing.  相似文献   

13.
Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI) as a transfection reagent has been considered as an attractive method to produce recombinant proteins rapidly for pre-clinical studies. A high level of transfection efficiency, which is required for high-level TGE in CHO cells, can be achieved by increasing the PEI concentration. However, PEI induces cytotoxicity in a dose-dependent manner. To overcome this problem, Bcl-2 protein, an anti-apoptotic protein, was overexpressed in CHO cells (DG44). At a ratio of PEI to DNA (an N/P ratio) of 10, there were no significant differences in transfection efficiency and cell viability between Bcl-2 overexpressing and non-overexpressing cells. The transfection efficiency and cell viability were 2–11% and 83–92%, respectively. However, there were significant differences (P < 0.05) in the transfection efficiency and cell viability between them at a higher N/P ratio. At an N/P ratio of 40, the transfection efficiency and cell viability of Bcl-2 non-overexpressing cells were 24–38% and 35–40%, respectively, while those of Bcl-2 overexpressing cells were 48–53% and 43–56%, respectively. Furthermore, compared with Bcl-2 non-overexpressing cells, more DNAs entered the Bcl-2 overexpressing cells, resulting in a higher rate of TGE per cell. PE-Annexin V apoptosis revealed that Bcl-2 overexpression suppressed PEI-induced apoptotic cell death at high N/P ratios. Taken together, Bcl-2 overexpression in CHO cells suppresses apoptotic cell death during PEI-mediated transient transfection, resulting in enhanced transfection efficiency and TGE.  相似文献   

14.
Transient gene expression (TGE) is a methodology employed in bioprocessing for the fast provision of recombinant protein material. Mild hypothermia is often introduced to overcome the low yield typically achieved with TGE and improve specific protein productivity. It is therefore of interest to examine the impact of mild hypothermic temperatures on both the yield and quality of transiently expressed proteins and the relationship to changes in cellular processes and metabolism. In this study, we focus on the ability of a Chinese hamster ovary cell line to galactosylate a recombinant monoclonal antibody (mAb) product. Through experimentation and flux balance analysis, our results show that TGE in mild hypothermic conditions led to a 76% increase in qP compared to TGE at 36.5°C in our system. This increase is accompanied by increased consumption of nutrients and amino acids, together with increased production of intracellular nucleotide sugar species, and higher rates of mAb galactosylation, despite a reduced rate of cell growth. The reduction in biomass accumulation allowed cells to redistribute their energy and resources toward mAb synthesis and Fc‐glycosylation. Interestingly, the higher capacity of cells to galactosylate the recombinant product in TGE at 32°C appears not to have been assisted by the upregulation of galactosyltransferases (GalTs), but by the increased expression of N‐acetylglucosaminyltransferase II (GnTII) in this cell line, which facilitated the production of bi‐antennary glycan structures for further processing.  相似文献   

15.
Transient gene expression (TGE) using mammalian cells is an extensively used technology for the production of antibodies and recombinant proteins and has been widely adopted by both academic and industrial labs. Chinese Hamster Ovary (CHO) cells have become one of the major workhorses for TGE of recombinant antibodies due to their attractive features: post-translational modifications, adaptation to high cell densities, and use of serum-free media. In this study, we describe the optimization of parameters for TGE for antibodies from CHO cells. Through a matrix evaluation of multiple factors including inoculum, transfection conditions, amount and type of DNA used, and post-transfection culture conditions, we arrived at an uniquely optimized process with higher titer and reduced costs and time, thus increasing the overall efficiency of early antibody material supply. We further investigated the amount of coding DNA used in TGE and the influence of kinetics and size of the transfection complex on the in vitro efficiency of the transfection. We present here the first report of an optimized TGE platform using Filler DNA in an early drug discovery setting for the screening and production of therapeutic mAbs.  相似文献   

16.
《New biotechnology》2015,32(6):716-719
Transient gene expression (TGE) is an essential tool for the production of recombinant proteins, especially in early drug discovery and development phases of biopharmaceuticals. The need for fast production of sufficient recombinant protein for initial tests has dramatically increased with increase in the identification of potential novel pharmaceutical targets. One of the critical factors for transient transfection is plasmid copy number (PCN), for which we here provide an optimized qPCR based protocol. Thereby, we show the loss of PCN during a typical batch process of HEK293 cells after transfection from 606,000 to 4560 copies per cell within 5 days. Finally two novel human kidney cell lines, RS and RPTEC/TERT1 were compared to HEK293 and proved competitive in terms of PCN and specific productivity.In conclusion, since trafficking and degradation of plasmid DNA is not fully understood yet, improved methods for analysis of PCN may contribute to design specific and more stable plasmids for high yield transient gene expression systems.  相似文献   

17.
18.
The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50-80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells.  相似文献   

19.
20.
Liu Y  Su Y  Sun S  Wang T  Qiao X  Run X  Liang Z 《PloS one》2012,7(4):e35783
Evidence has suggested that insulin resistance (IR) or high levels of glucocorticoids (GCs) may be linked with the pathogenesis and/or progression of Alzheimer's disease (AD). Although studies have shown that a high level of GCs results in IR, little is known about the molecular details that link GCs and IR in the context of AD. Abnormal phosphorylation of tau and activation of μ-calpain are two key events in the pathology of AD. Importantly, these two events are also related with GCs and IR. We therefore speculate that tau phosphorylation and μ-calpain activation may mediate the GCs-induced IR. Akt phosphorylation at Ser-473 (pAkt) is commonly used as a marker for assessing IR. We employed two cell lines, wild-type HEK293 cells and HEK293 cells stably expressing the longest human tau isoform (tau-441; HEK293/tau441 cells). We examined whether DEX, a synthetic GCs, induces tau phosphorylation and μ-calpain activation. If so, we examined whether the DEX-induced tau phosphorylation and μ-calpain activation mediate the DEX-induced inhibition on the insulin-stimulated Akt phosphorylation. The results showed that DEX increased tau phosphorylation and induced tau-mediated μ-calpain activation. Furthermore, pre-treatment with LiCl prevented the effects of DEX on tau phosphorylation and μ-calpain activation. Finally, both LiCl pre-treatment and calpain inhibition prevented the DEX-induced inhibition on the insulin-stimulated Akt phosphorylation. In conclusion, our study suggests that the tau phosphorylation and μ-calpain activation mediate the DEX-induced inhibition on the insulin-stimulated Akt phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号