首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to determine the potential relationships between rises in intracellular pH (pHi) and intracellular free calcium activity (Cai2+) during cell activation in Xenopus eggs. To do this, we used two weak bases, NH4Cl and procaine, and a weak acid, CO2, and measured Cai2+ variations in response to these imposed pHi variations. NH4Cl and procaine increased Cai2+ in both unactivated and activated eggs. Procaine was found to alkalinize the egg cytoplasm, whereas the other weak base, NH4Cl, acidified the egg cytoplasm. On the other hand, CO2 was found to acidify the cytoplasm and to substantially decrease Cai2+, also in unactivated and activated eggs. In addition, CO2 triggered an increase in the conductance of the plasma membrane to Cl- ions, similarly to what had been found previously with weak bases (Charbonneau, M. (1989) Cell Differ. Develop. 26, 39-52). These Cl- channels, similarly to the sperm-triggered Cl- channels during the fertilization potential, are supposed to be Ca2(+)-sensitive. Therefore, the changes in Ca2+ observed in response to CO2 do not seem to be responsible for the opening of these Cl- channels, which would rather be triggered by an increase in Cai2+ localized near the plasma membrane. We conclude therefore that weak acids and bases represent appropriate tools for studying cytosolic Ca2+ homeostasis, but not for dissecting the complex pathways involved in signal transduction.  相似文献   

2.
The effects of NH4Cl on cytoplasmic free calcium concentration ([Ca2+]i) and pH (pHi) in single bovine anterior pituitary cells were determined using fluorescence imaging microscopy. Addition of NH4Cl (10-40 mM) in the presence of 1 mM extracellular calcium ([Ca2+]e) increased [Ca2+]i to a peak which then fell to a sustained plateau, returning to resting levels upon removal of NH4Cl. In medium containing 0.1 microM [Ca2+]e, or in 1 mM [Ca2+]e medium containing 0.1 microM nitrendipine, the plateau was absent leaving only a transient [Ca2+]i spike. NH4Cl also increased pHi and this, like the [Ca2+]i plateau, remained elevated during the continued presence of NH4Cl. In medium containing only 0.1 microM [Ca2+]e, to preclude refilling of internal stores by entry of external calcium, repeated exposures to NH4Cl induced repeated [Ca2+]i transients. In contrast, only the initial exposure to thyrotropin releasing hormone (TRH; 20-500 nM) caused a [Ca2+]i rise but, after an additional exposure to NH4CI, TRH responses re-emerged in some cells. Pre-treatment with the calcium ionophore ionomycin abolished the rise caused by TRH, but neither TRH nor ionomycin pretreatment affected the response to NH4Cl. Neither acetate removal nor methylamine increased [Ca2+]i in medium containing 0.1 microM [Ca2+]e, although in both cases pHi increased. We conclude that in bovine anterior pituitary cells NH4Cl raises [Ca2+]i by two independent pathways, increasing net calcium entry and mobilizing Ca2+ from a TRH-insensitive calcium store.  相似文献   

3.
We determined the effects of superoxide anion, produced by addition of xanthine oxidase to hypoxanthine, on the intracellular pH (pHi) and intracellular free calcium concentration ([Ca2+]i) and release of arachidonate in human cultured amnion cells. Superoxide anion induced a prompt increase of pHi and subsequent increase of [Ca2+]i. The evoked pHi was inhibited by pretreatment with anion channel blockers but not affected by omission of extracellular Na+ or addition of amiloride. The increase of [Ca2+]i was inhibited significantly by the absence of extracellular calcium or by the addition of a calcium channel blocker, cobalt. NH4Cl, which can generally increase pHi, also increased [Ca2+]i of amnion cells. But the increase of [Ca2+]i induced by the NH4Cl was significantly less than that induced by the amount of superoxide anion causing a similar increase in pHi. These results show that superoxide anion, crossed through anion channel in membrane, increased [Ca2+]i at least partially via increase of pHi and that the calcium mobilization was dependent on both extracellular and intracellular sources. Superoxide anion induced the release of arachidonate in a dose-dependent manner and this induction was inhibited by omission of extracellular calcium. These data suggest that the release of arachidonate was dependent on the increase of [Ca2+]i. We also determined the viability of cells in the presence of superoxide anion by flow cytometry. Superoxide anion at the levels used in these experiments did not change the percentage of viable cells. These findings suggested that superoxide anion may regulate biological functions in amnion cells via pHi, [Ca2+]i mobilization, and the release of arachidonate without damaging the cells.  相似文献   

4.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

5.
Gap junctional conductance (gj) between cardiac ventricular myocyte pairs is rapidly, substantially, and reversibly reduced by sarcoplasmic acidification with CO2 when extracellular calcium activity is near physiological levels (1.0 mM CaCl2 added; 470 microM Ca++). Intracellular calcium concentration (Cai), measured by fura-2 fluorescence in cell suspensions, was 148 +/- 39 nM (+/- SEM, n = 6) and intracellular pH (pHi), measured with intracellular ion-selective microelectrodes, was 7.05 +/- 0.02 (n = 5) in cell pair preparations bathed in medium equilibrated with air. Cai increased to 515 +/- 12 nM (n = 6) and pHi decreased to 5.9-6.0 in medium equilibrated with 100% CO2. In air-equilibrated low-calcium medium (no added CaCl2; 2-5 microM Ca++), Cai was 61 +/- 9 nM (n = 13) at pHi 7.1. Cai increased to only 243 +/- 42 nM (n = 9) at pHi 6.0 in CO2-equilibrated low-calcium medium. Junctional conductance, in most cell pairs, was not substantially reduced by acidification to pHi 5.9-6.0 in low-calcium medium. Cell pairs could still be electrically uncoupled reversibly by the addition of 100 microM octanol, an agent which does not significantly affect Cai. In low-calcium low-sodium medium (choline substitution for all but 13 mM sodium), acidification with CO2 increased Cai to 425 +/- 35 nM (n = 11) at pHi 5.9-6.0 and gj was reduced to near zero. Junctional conductance could also be reduced to near zero at pHi 6.0 in low-calcium medium containing the calcium ionophore, A23187. The addition of the calcium ionophore did not uncouple cell pairs in the absence of acidification. In contrast, acidification did not substantially reduce gj when intracellular calcium was low. Increasing intracellular calcium did not appreciably reduce gj at pHi 7.0. These results suggest that, although other factors may play a role, H+ and Ca++ act synergistically to decrease gj.  相似文献   

6.
In the fertilization of sea urchin eggs, intracellular [Ca2+] (Cai) increases transiently and intracellular pH (pHi) elevates accordingly. Unlinking these two activating factors experimentally, the requirement of the increase in pHi for sperm aster formation in the sea urchin, Clypeaster japonicus, was investigated. When the eggs were injected with an EGTA or BAPTA solution, they incorporated sperm but did not organize the sperm aster. Using these sperm-incorporated eggs under the condition that an increase in Cai was blocked, pHi was regulated by two methods: (i) perfusing ammonium acetate-containing seawater; and (ii) injecting pH buffer solutions of various pH values. By either of the two methods, the sperm aster formed at pHi 7.0 or more and functioned in female pronuclear migration when the sperm aster reached the female pronucleus. Hence, the step of the transient increase in Cai at fertilization can be bypassed. In contrast, a pHi increase is indispensably required for sperm aster formation in sea urchin eggs. Moreover, under the condition that there was the transient increase in Cai, the threshold pHi value for sperm aster formation was pHi 7.0 or more. Consequently, whether a Cai increase on fertilization occurs or not, the threshold pHi value for sperm aster formation is constant in sea urchin eggs.  相似文献   

7.
The relation between rate of protein synthesis and intracellular pH (pHi) was investigated in the eggs of the sea urchin Strongylocentrotus purpuratus. Increasing external pH (pHo) resulted in raising pHi of eggs and also in increased rate of protein synthesis. Similarly, at constant pHo, adding various concentrations of NH4Cl to eggs caused graded increases of both pHi and protein synthesis. Using various concentrations of NH4Cl at a low pHo and incubating eggs at high pHo, we compared protein synthesis under similar pHi conditions and this revealed that at least half the increased protein synthesis stimulated by NH4Cl is independent of induced rise of pHi, as also seems to be chromosome condensation which was never observed in eggs incubated at high pHoS. The additional pH-independent event triggered by NH4Cl does not appear related to elevated free Ca2+, since protein synthesis and chromosome condensation do not require external Ca2+ and no increases of free Ca2+ sufficient to activate the Ca2+-calmodulin-mediated enzyme NAD kinase occurred. Monensin disrupts intravesicular pH gradients but does not stimulate protein synthesis, indicating that this local effect, also promoted by NH4Cl, is not involved in ammonia-induced increase of protein synthesis. Using two other amines which have low pKa values, benzocaine and tricaine, we observed 2-fold increases in protein synthesis rates, even though pHi was lowered. While the exact nature of the pH-independent event(s) triggered by NH4Cl, and possibly by other amines, remains unidentified, its possible involvement in normal mitosis is stressed.  相似文献   

8.
We examined the effect of depolarization on intracellular pH (pHi) of normal (pHi approximately 7.37) and acidified (pHi 5.90-6.70) frog semitendinosus muscle using microelectrodes. A small bundle was superfused with a Na(+)-free buffered solution (10 mM HEPES, 100% O2, pH 7.35) containing either 2.5 or 25 mM K+. An NH4Cl prepulse was used to lower pHi. At normal pHi, depolarization usually produced a slight (0.04) alkalinization, followed by a fall in pHi of approximately 0.2. In contrast, in all 25 acidified bundles pHi rose by 0.1-0.7. The rise was greater the lower the initial pHi. It could be imitated by caffeine and blocked by tetracaine and thus was, most likely, initiated by release of calcium. We ascribed the alkalinization to hydrolysis of phosphocreatine (PCr); 2,4-dinitrofluorobenzene abolished it. Biochemical analysis on fibers at the peak of alkalinization showed PCr to be reduced by one-half, while PCr in normal fibers that had been depolarized for the same period (4-6 min) showed no change. We postulated that low pHi slows glycolysis with its associated ATP formation by reducing glycogenolysis and particularly by reducing conversion of fructose-6-phosphate to fructose-1,6-diphosphate through inhibition of phosphofructokinase (PFK), an enzyme which is known to be highly pH sensitive. Thus PCr hydrolysis would be required to replace much of the hydrolyzed ATP. This postulated effect on PFK is in agreement with the finding that glucose-6-phosphate (in near-equilibrium with fructose-6-phosphate) was increased nearly fivefold in the depolarized acid fibers, but not in the depolarized normal fibers. However, fructose-1,6-diphosphate also increased significantly; 3-phosphoglycerate was not affected. This suggests an additional acid-induced bottleneck between the latter two substrates. We measured the intrinsic buffering power, beta, of frog semitendinosus muscle with small pulses of NH4Cl. It was found to vary with pHi according to beta = 144.6 - 17.2 (pHi).  相似文献   

9.
We determined the effects of intracellular respiratory and metabolic acid or alkali loads, at constant or variable external pH, on the apical membrane Na+-specific conductance (ga) and basolateral membrane conductance (gb), principally due to K+, in the short-circuited isolated frog skin epithelium. Conductances were determined from the current-voltage relations of the amiloride-inhibitable cellular current pathway, and intracellular pH (pHi) was measured using double barreled H+-sensitive microelectrodes. The experimental set up permitted simultaneous recording of conductances and pHi from the same epithelial cell. We found that due to the asymmetric permeability properties of apical and basolateral cell membranes to HCO3- and NH+4, the direction of the variations in pHi was dependent on the side of addition of the acid or alkali load. Specifically, changing from control Ringer, gassed in air without HCO3- (pHo = 7.4), to one containing 25 mmol/liter HCO3- that was gassed in 5% CO2 (pHo = 7.4) on the apical side caused a rapid intracellular acidification whereas when this maneuver was performed from the basolateral side of the epithelium a slight intracellular alkalinization was produced. The addition of 15 mmol/liter NH4Cl to control Ringer on the apical side caused an immediate intracellular alkalinization that lasted up to 30 min; subsequent removal of NH4Cl resulted in a reversible fall in pHi, whereas basolateral addition of NH4Cl produced a prolonged intracellular acidosis. Using these maneouvres to change pHi we found that the transepithelial Na+ transport rate (Isc), and ga, and gb were increased by an intracellular alkalinization and decreased by an acid shift in pHi. These variations in Isc, ga, and gb with changing pHi occurred simultaneously, instantaneously, and in parallel even upon small perturbations of pHi (range, 7.1-7.4). Taken together these results indicate that pHi may act as an intrinsic regulator of epithelial ion transport.  相似文献   

10.
Fluorescence and electrophysiological methods were used to determine the effects of intracellular pH (pHi) on cellular NH4+/K+ transport pathways in the renal medullary thick ascending limb of Henle (MTAL) from CD1 mice. Studies were performed in suspensions of MTAL tubules (S-MTAL) and in isolated, perfused MTAL segments (IP-MTAL). Steady-state pHi measured using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) averaged 7.42 +/- 0.02 (mean +/- SE) in S-MTAL and 7.26 +/- 0.04 in IP-MTAL. The intrinsic cellular buffering power of MTAL cells was 29.7 +/- 2.4 mM/pHi unit at pHi values between 7.0 and 7.6, but below a pHi of 7.0 the intrinsic buffering power increased linearly to approximately 50 mM/pHi unit at pHi 6.5. In IP-MTAL, NH4+ entered cells across apical membranes via both Ba(2+)-sensitive pathway and furosemide-sensitive Na+:K+(NH4+):2Cl- cotransport mechanisms. The K0.5 and maximal rate for combined apical entry were 0.5 mM and 83.3 mM/min, respectively. The apical Ba(2+)-sensitive cell conductance in IP-MTAL (Gc), which reflects the apical K+ conductance, was sensitive to pHi over a pHi range of 6.0-7.4 with an apparent K0.5 at pHi approximately 6.7. The rate of cellular NH4+ influx in IP-MTAL due to the apical Ba(2+)-sensitive NH4+ transport pathway was sensitive to reduction in cytosolic pH whether pHi was changed by acidifying the basolateral medium or by inhibition of the apical Na+:H+ exchanger with amiloride at a constant pHo of 7.4. The pHi sensitivities of Gc and apical, Ba(2+)-sensitive NH4+ influx in IP-MTAL were virtually identical. The pHi sensitivity of the Ba(2+)-sensitive NH4+ influx in S-MTAL when exposed to (apical+basolateral) NH4Cl was greater than that observed in IP-MTAL where NH4Cl was added only to apical membranes, suggesting an additional effect of intracellular NH4+/NH3 on NH4+ influx. NH4+ entry via apical Na+:K+ (NH4+):2Cl- cotransport in IP-MTAL was somewhat more sensitive to reductions in pHi than the Ba(2+)-sensitive NH4+ influx pathway; NH4+ entry decreased by 52.9 +/- 13.4% on reducing pHi from 7.31 +/- 0.17 to 6.82 +/- 0.14. These results suggest that pHi may provide a negative feedback signal for regulating the rate of apical NH4+ entry, and hence transcellular NH4+ transport, in the MTAL. A model incorporating these results is proposed which illustrates the role of both pHi and basolateral/intracellular NH4+/NH3 in regulating the rate of transcellular N H4+ transport in the MTAL.  相似文献   

11.
Regulatory relationship and gain control between cytosolic free Ca2+ concentration (Cai) and cytosolic pH (pHi) were evaluated by two different cell types, gastric parietal cells, and blood platelets. Studies were carried out in both single cells and populations of cells, using Ca2(+)-indicative probe fura-2 (1-(2-(5'-carboxyoxazol-2'-yl)-6-aminobenzofuran-5-oxy)-2-(2 '-amino-5'- methylphenoxy)ethane-N,N,N',N'-tetraacetic acid) and pH-indicative probe BCECF (2',7'-bis(carboxyethyl)carboxyfluorescein). Stimulation of single and populational parietal cells and platelets with gastrin and thrombin, respectively, resulted in an increase in Cai. In both populational cell types, an initial change in pHi during agonist stimulation occurred almost simultaneously with the mobilization of Ca2+; an initial transient decrease in pHi was followed by a slower increase in pHi above the prestimulation level. When populational platelets were preloaded with the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), the thrombin-induced initial large increase in Cai was apparently inhibited, whereas the pHi decrease induced by thrombin was not altered. This suggests that the initial Cai change is not a prerequisite for the pHi change. The effect of pHi on Cai was examined next. In both single and populational cell types, application of the K(+)-H+ ionophore nigericin, which induced a transient decrease in pHi, led to the release of Ca2+ from intracellular stores. In single parietal cells double-labeled with fura-2 and BCECF, a temporal decrease in pHi preceded the rise in Cai after stimulation with nigericin. A decrease in pHi and an increase in Cai occurred at 1.5 and 4 s, respectively. In single parietal cells, replacement of medium Na+ with N-methyl-D-glucamine (NMG+), which also induced a decrease in pHi, resulted in repetitive Ca2+ spike oscillations. The source of Ca2+ utilized for the Ca2+ oscillation that was induced by NMG+ originated from the agonist-sensitive pool. Thus, several maneuvers, which were capable of decreasing pHi, led to an increase in Cai. Cytosolic acidification may be a part of the trigger for Ca2+ mobilization from intracellular stores in both parietal cells and platelets.  相似文献   

12.
To study the role of intracellular pH (pHi) in catecholamine secretion and the regulation of pHi in bovine chromaffin cells, the pH-sensitive fluorescent indicator [2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein] was used to monitor the on-line changes in pHi. The pHi of chromaffin cells at resting state is approximately 7.2. The pHi was manipulated first by incubation of the cells with NH4+, and then the solution was replaced with a NH4(+)-free solution to induce acidification of the cytoplasm. The pHi returned toward the basal pH value after acidification within 5-10 min in the presence of Na+ or Li+, but the pHi stayed acidic when Na(+)-free buffers were used or in the presence of amiloride and its analogues. These results suggest that the pH recovery process after an acid load is due to the Na+/H+ exchange activity in the plasma membrane of the chromaffin cells. The catecholamine secretion evoked by carbachol and Na+ removal was enhanced after the cytoplasm had been made more acidic. It appears that acidic pH favors the occurrence of exocytosis.  相似文献   

13.
Superoxide as a signal for increase in intracellular pH   总被引:3,自引:0,他引:3  
We examined the role of superoxide in the increase in intracellular pH (pHi) of human histiocytic leukemia U937 cells treated with 4 beta-phorbol-12,13-didecanoate (4 beta-PDD) or serum. 4 beta-PDD or serum induced a rapid increase in pHi, and antioxidants such as superoxide dismutase (SOD), vitamin E, and butylated hydroxyanisole (BHA) were found to inhibit the amiloride-sensitive increase in pHi induced by 4 beta-PDD. SOD inhibited the increase in pHi caused by serum, and essentially the same was found in concanavalin A-stimulated mouse thymocytes. Also, a superoxide-generating system, xanthine-xanthine oxidase (X-XOD), increased pHi of U937 cells as much as 4 beta-PDD or serum. From these findings, it appears that superoxide is the basis for the modulation of pHi.  相似文献   

14.
P Mariot  P Sartor  J Audin  B Dufy 《Life sciences》1991,48(3):245-252
Intracellular pH (pHi) can now be measured at the single cell level using dual emission wavelength microspectrofluorimetry with the fluorescent pH indicator SNARF 1 and its membrane permeant acetoxymethyl ester (SNARF 1/AM). We measured pHi of individual pituitary cells under both basal and stimulated conditions. The emitted fluorescence of SNARF 1 probe was calibrated following experimental manipulations of pHi in two types of rat pituitary cells. The calibration curves obtained in the two cell types were identical. We observed a Gaussian distribution of individual pHi with a wide dispersion (6.95 to 8) in the two cell populations. TRH (10(-7) M) and ionomycin (5 microM) induced a transient acidification followed by a sustained alkalinization, whereas K+ (50 mM) depolarization only exerted a transient acidification. These results show that the dual emission pH indicator SNARF 1 can be used to reliably investigate changes in pHi in individual endocrine cells.  相似文献   

15.
A sustained high voltage-activated (HVA), nifedipine- and cadmium- sensitive calcium current and a sustained calcium action potential (AP) were recorded from horizontal cells isolated from catfish retina. pH indicator dyes showed that superfusion with NH4Cl alkalinized these cells and that washout of NH4Cl or superfusion with Na-acetate acidified them. HVA current was slightly enhanced during superfusion of NH4Cl but was suppressed upon NH4Cl washout or application of Na- acetate. When 25 mM HEPES was added to the patch pipette to increase intracellular pH buffering, the effects of NH4Cl and Na-acetate on HVA current were reduced. These results indicated that intracellular acidification reduces HVA calcium current and alkalinization increases it. Sustained APs, recorded with high resistance, small diameter microelectrodes, were blocked by cobalt and cadmium and their magnitude varied with extracellular calcium concentration. These results provide confirmatory evidence that the HVA current is a major component of the AP and indicate that the AP can be used as a measure of how the HVA current can be modified in intact, undialyzed cells. The duration of APs was increased by superfusion with NH4Cl and reduced by washout of NH4Cl or superfusion with Na-acetate. The Na-acetate and NH4Cl washout- dependent shortening of the APs was observed in the presence of intracellular BAPTA, a calcium chelator, IBMX, a phosphodiesterase inhibitor, and in Na-free or TEA-enriched saline. These findings provide supportive evidence that intracellular acidification may directly suppress the HVA calcium current in intact cells. Intracellular pH changes would thereby be expected to modulate not only the resting membrane potential of these cells in darkness, but calcium- dependent release of neurotransmitter from these cells as well. Furthermore, this acidification-dependent suppression of calcium current could serve a protective role by reducing calcium entry during retinal ischemia, which is usually thought to be accompanied by intracellular acidosis.  相似文献   

16.
Acidosis increases resting cytosolic [Ca2+], (Cai) of myocardial preparations; however, neither the Ca2+ sources for the increase in Cai nor the effect of acidosis on mitochondrial free [Ca2+], (Cam) have been characterized. In this study cytosolic pH (pHi) was monitored in adult rat left ventricular myocytes loaded with the acetoxymethyl ester (AM form) of SNARF-1. A stable decrease in the pHi of 0.52 +/- 0.05 U (n = 16) was obtained by switching from a bicarbonate buffer equilibrated with 5% CO2 to a buffer equilibrated with 20% CO2. Electrical stimulation at either 0.5 or 1.5 Hz had no effect on pHi in 5% CO2, nor did it affect the magnitude of pHi decrease in response to hypercarbic acidosis. Cai was measured in myocytes loaded with indo- 1/free acid and Cam was monitored in cells loaded with indo-1/AM after quenching cytosolic indo-1 fluorescence with MnCl2. In quiescent intact myocytes bathed in 1.5 mM [Ca2+], hypercarbia increased Cai from 130 +/- 5 to 221 +/- 13 nM. However, when acidosis was effected in electrically stimulated myocytes, diastolic Cai increased more than resting Cai in quiescent myocytes, and during pacing at 1.5 Hz diastolic Cai was higher (285 +/- 17 nM) than at 0.5 Hz (245 +/- 18 nM; P < 0.05). The magnitude of Cai increase in quiescent myocytes was not affected either by sarcoplasmic reticulum (SR) Ca2+ depletion with ryanodine or by SR Ca2+ depletion and concomitant superfusion with a Ca(2+)-free buffer. In unstimulated intact myocytes hypercarbia increased Cam from 95 +/- 12 to 147 +/- 19 nM and this response was not modified either by ryanodine and a Ca(2+)-free buffer or by 50 microM ruthenium red in order to block the mitochondrial uniporter. In mitochondrial suspensions loaded either with BCECF/AM or indo-1/AM, acidosis produced by lactic acid addition decreased both intra- and extramitochondrial pH and increased Cam. Studies of mitochondrial suspensions bathed in indo- 1/free acid-containing solution showed an increase in extramitochondrial Ca2+ after the addition of lactic acid. Thus, in quiescent myocytes, cytoplasmic and intramitochondrial buffers, rather than transsarcolemmal Ca2+ influx or SR Ca2+ release, are the likely Ca2+ sources for the increase in Cai and Cam, respectively; additionally, Ca2+ efflux from the mitochondria may contribute to the raise in Cai. In contrast, in response to acidosis, diastolic Cai in electrically stimulated myocytes increases more than resting Cai in quiescent cells; this suggests that during pacing, net cell Ca2+ gain contributes to enhance diastolic Cai.  相似文献   

17.
Receptor-stimulated phosphoinositide turnover leads to activation of Na+/H+ exchange and subsequent intracellular alkalinization. To probe the effect of increased intracellular pH (pHi) on Ca2+ homeostasis in cultured bovine aortic endothelial cells (BAEC), we studied the effect of weak bases, ammonium chloride (NH4Cl) and methylamine (agents which increase pHi by direct passive diffusion), on resting and ATP (purinergic receptor agonist)-induced Ca2+ fluxes. Changes in cytosolic free Ca2+ ([Ca2+]i) or pHi were monitored in BAEC monolayers using the fluorescent dyes, fura-2 or 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, respectively. NH4Cl-induced, dose-dependent (5-20 mM) increases in [Ca2+]i (maximum change = 195 +/- 26 nM) which were temporally similar to the NH4Cl-induced pHi increases. Methylamine (20 mM) induced a more sustained pHi increase and also stimulated a prolonged [Ca2+]i increase. When BAEC were bathed in HCO3- buffer, removal of extracellular CO2/bicarbonate caused pHi to increase and also induced [Ca2+]i to increase transiently. Extracellular Ca2+ removal did not abolish the rapid NH4Cl-induced rise in [Ca2+]i, although the response was blunted and more transient. NH4Cl addition to BAEC cultures resulted in an increase in 45Ca efflux and decrease in total cell 45Ca content. BAEC treatment with ATP (100 microM) to deplete inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools completely blocked the NH4Cl (20 mM)-induced rise in [Ca2+]i. Likewise, prior NH4Cl addition partially inhibited ATP-induced increases in [Ca2+]i, as well as slowed the frequency of repetitive [Ca2+]i spikes in single endothelial cells due to agonist. NH4Cl augmented the rate of [Ca2+]i increase that occurs in response to the depletion of agonist-sensitive intracellular Ca2+ pools. However, the internal Ca2+ store remained depleted during the continued presence of NH4Cl, as indicated by a decreased [Ca2+]i response to ATP in Ca2(+)-free medium. Finally, NH4Cl exerted these actions without affecting basal or ATP-stimulated IP3 formation. These observations provide direct evidence that increased pHi leads to Ca2+ mobilization from an agonist-sensitive pool and impairs Ca2+ pool(s) refilling mechanisms without altering cellular IP3 levels.  相似文献   

18.
L-type Ca2+ channel currents were recorded from myocytes isolated from bovine pial and porcine coronary arteries to study the influence of changes in intracellular pH (pHi). Whole cell ICa fell when pHi was made more acidic by substituting HEPES/NaOH with CO2/bicarbonate buffer (pHo 7.4, 36 degrees C), and increased when pHi was made more alkaline by addition of 20 mM NH4Cl. Peak ICa was less pHi sensitive than late ICa (170 ms after depolarization to 0 mV). pHi-effects on single Ca2+ channel currents were studied with 110 mM BaCl2 as the charge carrier (22 degrees C, pHo 7.4). In cell-attached patches pHi was changed by extracellular NH4Cl or through the opened cell. In inside-out patches pHi was controlled through the bath. Independent of the method used the following results were obtained: (a) Single channel conductance (24 pS) and life time of the open state were not influenced by pHi (between pHi 6 and 8.4). (b) Alkaline pHi increased and acidic pHi reduced the channel availability (frequency of nonblank sweeps). (c) Alkaline pHi increased and acidic pHi reduced the frequency of late channel re- openings. The effects are discussed in terms of a deprotonation (protonation) of cytosolic binding sites that favor (prevent) the shift of the channels from a sleepy to an available state. Changes of bath pHo mimicked the pHi effects within 20 s, suggesting that protons can rapidly permeate through the surface membrane of vascular smooth muscle cells. The role of pHi in Ca2+ homeostases and vasotonus is discussed.  相似文献   

19.
Intracellular pH (pHi) was simultaneously measured in 6 normal tissues and a malignant tumour of rats by a rapid triple isotope technique, based on the in vivo distribution of 5,5-dimethyl-2,4-oxazolidinedione-2-14C (DMO), tritiated water and sodium chloride-36. Results compared favourably with pH measured directly in the same rat by capillary glass electrode, and with values of other workers for pHi in rat tissues. Mean pHi of normal tissues was close to pH 7, and in each organ there was a linear relationship between pHi and extracellular pH (pHe) over the normal range of pHe encountered (pH 6.9-7.6). Organ pHi altered in response to administration of NH4Cl or NaHCO3 to the host.  相似文献   

20.
Photometric fluorescence microscopy has been used to measure intracellular pH (pHi) and free calcium concentrations [( Ca]i) in individual mouse thymocytes and 2H3 rat basophil leukaemic cells containing indicators for pH (quene 1) or calcium (quin 2). The pHi and [Ca]i measurements in individual 2H3 cells and mouse thymocytes and their responses to various stimuli were consistent with the corresponding data obtained from suspensions of these cells measured in a spectrofluorimeter. Photometric fluorescence microscopy of these indicators in individual cells provides a sensitive and fast method of following pHi and [Ca]i responses in individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号