首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinase-7 (MMP-7; matrilysin) induces homotypic adhesion of colon cancer cells by cleaving cell surface protein(s) and enhances their metastatic potential. Our previous study (Yamamoto, K., Higashi, S., Kioi, M., Tsunezumi, J., Honke, K., and Miyazaki, K. (2006) J. Biol. Chem. 281, 9170-9180) demonstrated that binding of MMP-7 to cell surface cholesterol sulfate (CS) is essential for the cell membrane-associated proteolytic action of the protease. To determine the region of MMP-7 essential for binding to CS, we constructed chimeric proteases consisting of various parts of MMP-7 and those of the catalytic domain of MMP-2; the latter protease does not have an affinity for CS. Studies of these chimeric proteases and other mutants of MMP-7 revealed that Ile29, Arg33, Arg51, and Trp55, in the internal sequence, and the C-terminal three residues corresponding to residues 171-173 of MMP-7 are essential for binding to CS. An MMP-7 mutant, which had the internal 4 residues at positions 29, 33, 51, and 55 of MMP-7 replaced with the corresponding residues of MMP-2 and the C-terminal 3 residues deleted, had essentially no affinity for CS. This mutant and wild-type MMP-7 showed similar proteolytic activity toward fibronectin, whereas the mutant lacked the ability to induce the colon cancer cell aggregation. In the three-dimensional structure of MMP-7, the residues essential for binding to CS are located on the molecular surface in the opposite side of the catalytic cleft of the protease. Therefore, it is assumed that the active site of MMP-7 bound to cell surface is directed outside. We speculate that the direction of the cell-bound MMP-7 makes it feasible for the protease to cleave its substrates on cell surface.  相似文献   

2.
Because beta-amyloid precursor protein (APP) has the abilities both to interact with extracellular matrix and to inhibit gelatinase A activity, this molecule is assumed to play a regulatory role in the gelatinase A-catalyzed degradation of extracellular matrix. To determine a region of APP essential for the inhibitory activity, we prepared various derivatives of APP. Functional analyses of proteolytic fragments of soluble APP (sAPP) and glutathione S-transferase fusion proteins, which contain various COOH-terminal parts of sAPP, showed that a site containing residues 579-601 of APP(770) is essential for the inhibitory activity. Moreover, a synthetic decapeptide containing the ISYGNDALMP sequence corresponding to residues 586-595 of APP(770) had a gelatinase A inhibitory activity slightly higher than that of sAPP. Studies of deletion of the NH(2)- and COOH-terminal residues and alanine replacement of internal residues of the decapeptide further revealed that Tyr(588), Asp(591), and Leu(593) of APP mainly stabilize the interaction between gelatinase A and the inhibitor. We also found that the residues of Ile(586), Met(594), and Pro(595) modestly contribute to the inhibitory activity. The APP-derived decapeptide efficiently inhibited the activity of gelatinase A (IC(50) = 30 nm), whereas its inhibitory activity toward membrane type 1 matrix metalloproteinase was much weaker (IC(50) = 2 microm). The decapeptide had poor inhibitory activity toward gelatinase B, matrilysin, and stromelysin (IC(50) > 10 microm). The APP-derived inhibitor formed a complex with active gelatinase A but not with progelatinase A, and the complex formation was prevented completely by a hydroxamate-based synthetic inhibitor. Therefore, the decapeptide region of APP is likely an active site-directed inhibitor that has high selectivity toward gelatinase A.  相似文献   

3.
Lachrymatory factor synthase (LFS), an enzyme essential for the synthesis of the onion lachrymatory factor (propanethial S-oxide), was identified in 2002. This was the first reported enzyme involved in the production of thioaldehyde S-oxides via an intra-molecular H(+) substitution reaction, and we therefore attempted to identify the catalytic amino acid residues of LFS as the first step in elucidating the unique catalytic reaction mechanism of this enzyme. A comparison of the LFS cDNA sequences among lachrymatory Allium plants, a deletion analysis and site-directed mutagenesis enabled us to identify two amino acids (Arg71 and Glu88) that were indispensable to the LFS activity. Homology modeling was performed for LFS/23-169 on the basis of the template structure of a pyrabactin resistance 1-like protein (PYL) which had been selected from a BLASTP search on SWISS-MODEL against LFS/23-169. We identified in the modeled structure of LFS a pocket corresponding to the ligand-binding site in PYL, and Arg71 and Glu88 were located in this pocket.  相似文献   

4.
We previously discovered that the budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene that confers resistance to the proline analogue azetidine-2-carboxylate (AZC). The MPR1-encoded protein (Mpr1) is an N-acetyltransferase that detoxifies AZC and is a novel member of the GCN5-related N-acetyltransferase (GNAT) superfamily. Mpr1 can reduce intracellular oxidation levels and protect yeast cells from oxidative stress, heat shock, freezing, or ethanol treatment. Here, we analyzed the amino acid residues in Mpr1 involved in substrate binding and catalysis by site-directed mutagenesis. The mutated genes were expressed in Escherichia coli, and the recombinant Strep-tagged fusion proteins were analyzed in terms of AZC resistance and acetyltransferase activity. The replacement of Arg145, which is conserved in the GNAT superfamily, by Ala, Asp, Glu, Gly, or Trp led to a growth defect of transformants grown in the presence of AZC. Kinetic studies demonstrated that these mutations caused a large reduction in the affinity for AZC and acetyl-CoA, suggesting that Arg145 interacts with both substrates. Among seven conserved Tyr residues, one of which may be a catalytic residue in the GNAT superfamily, Tyr166Ala- showed no detectable activity and Tyr166Phe-Mpr1, a remarkable decrease of the k(cat)/K(m) value. This result suggests that Tyr166 is critical for the catalysis.  相似文献   

5.
ExoM is a beta(1-4)-glucosyltransferase involved in the assembly of the repeat unit of the exopolysaccharide succinoglycan from Sinorhizobium meliloti. By comparing the sequence of ExoM to those of other members of the Pfam Glyco Domain 2 family, most notably SpsA (Bacillus subtilis) for whom the three-dimensional structure has been resolved, three potentially important aspartic acid residues of ExoM were identified. Single substitutions of each of the Asp amino acids at positions 44, 96, and 187 with Ala resulted in the loss of mutant recombinant protein activity in vitro as well as the loss of succinoglycan production in an in vivo rescue assay. Mutants harboring Glu instead of Asp-44 or Asp-96 possessed no in vitro activity but could restore succinoglycan production in vivo. However, replacement of Asp-187 with Glu completely inactivated ExoM as judged by both the in vitro and in vivo assays. These results indicate that Asp-44, Asp-96, and Asp-187 are essential for the activity of ExoM. Furthermore, these data are consistent with the functions proposed for each of the analogous aspartic acids of SpsA based on the SpsA-UDP structure, namely, that Asp-44 and Asp-96 are involved in UDP substrate binding and that Asp-187 is the catalytic base in the glycosyltransferase reaction.  相似文献   

6.
Kidney bean (Phaseolus vulgaris) alpha-amylase inhibitors, which are bivalent inhibitors with the subunit stoichiometry of (alphabeta)(2) complex, have been inferred to contain unique arginine, tryptophan, and tyrosine residues essential for the inhibitory activity. To test the validity of this inference, an attempt was made to identify the essential amino acid residues of a white kidney bean (P. vulgaris) alpha-amylase inhibitor (PHA-I) by using the chemical modification technique combined with amino acid sequencing and mass spectrometry. Exhaustive modification of the arginine residues by phenylglyoxal did not lead to a marked loss of activity, suggesting that no arginine residue is directly associated with the inhibitory activity. N-Bromosuccinimide treatment of PHA-I in the presence or absence of a substrate alpha-amylase revealed the involvement of two tryptophan residues in alpha-amylase inhibition, and they were identified as Trp188 of the beta-subunit by amino acid sequencing and mass spectrometry of lysylendopeptidase peptides. Further, two tyrosine residues were preferentially modified either by N-acetylimidazole or by tetranitromethane, resulting in a concomitant loss of most of the PHA-I activity. Amino acid sequencing of the lysylendopeptidase peptides from a tetranitromethane-modified PHA-I identified Tyr186 of the beta-subunit as an essential residue.  相似文献   

7.
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor.  相似文献   

8.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

9.
The gene encoding the endo-beta-N-acetylglucosaminidase from Flavobacterium sp. (Endo-Fsp) was sequenced. The Endo-Fsp gene was overexpressed in Escherichia coli cells, and was purified from inclusion bodies after denaturation by 8 M urea. The renatured Endo-Fsp had the same optimum pH and substrate specificity as the native enzyme. Endo-Fsp had 60% sequence identity with the endo-beta-N-acetylglucosaminidase from Streptomyces plicatus (Endo-H), and the putative catalytic residues were conserved. Site-directed mutagenesis was done at conserved residues based on the three-dimensional structure and mutagenesis of Endo-H. The mutant of Glu-128, corresponding to Glu-132 in Endo-H and identified as an active site residue, was inactivated. Mutagenesis around the predicted active site of Endo-Fsp reduced the enzymatic activity. Moreover, the hydrolytic activity toward hybrid-type oligosaccharides was decreased compared to that toward high-mannose type oligosaccharides by mutagenesis of Asp-126 and Asp-127. Therefore, site-directed mutagenesis of some of these conserved residues indicates that the predicted active sites are essential to the enzymatic activity of Endo-Fsp, and may have similar roles in catalysis as their counterparts in Endo-H.  相似文献   

10.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.  相似文献   

11.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

12.
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.  相似文献   

13.
Platelet adhesion is mediated by von Willebrand factor (VWF) that binds platelet glycoprotein Ib (GPIb). Previous observations suggested that heparin competitively inhibits the binding of VWF to GPIb and may down-regulate platelet adhesion. We performed charged-to-alanine scanning mutagenesis of domain A1 and studied dose-dependent binding to heparin-Sepharose beads. Mutations at Lys1362 and Arg1395, at which the GPIb binding was markedly decreased, showed 41% and 42% binding, respectively. Clustered mutations in the segments 1332KDRKR1336 and 1405KKKK1408, which have been proposed as heparin binding sequences, showed 72% and 52% binding, respectively. However, single alanine substitutions within these clusters showed normal binding. Our findings suggest that heparin may inhibit the binding of VWF to GPIb by interacting with GPIb binding and interpret why some hemorrhagic complications of heparin therapy are not predictable based on techniques for monitoring the conventional anticoagulant effects of heparin.  相似文献   

14.
15.
Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.  相似文献   

16.
Matrix metalloproteinase-13 (MMP-13) has been implicated as the protease responsible for collagen degradation in cartilage during osteoarthritis (OA). Compounds that inhibit the metalloproteinase at the Zn binding site typically lack specificity among MMP family members. Analogs of the low-micromolar lead MMP-13 inhibitor 4, discovered through high-throughput screening, were synthesized to investigate structure-activity relationships in this inhibitor series. Systematic modifications of 4 led to the discovery of MMP-13 inhibitors 20 and 24 which are more selective than 4 against other MMPs. Compound 20 is also approximately fivefold more potent as an MMP-13 inhibitor than the original HTS-derived lead compound 4.  相似文献   

17.
The matrix metalloproteinase enzyme MMP-13 plays a key role in the degradation of type II collagen in cartilage and bone in osteoarthritis (OA). An effective MMP-13 inhibitor would provide a disease modifying therapy for the treatment of arthritis, although this goal still continues to elude the pharmaceutical industry due to issues with safety. Our efforts have resulted in the discovery of a series of hydroxamic acid inhibitors of MMP-13 that do not significantly inhibit MMP-2 (gelatinase-1). MMP-2 has been implicated in the musculoskeletal side effects resulting from pan-MMP inhibition due to findings from spontaneously occurring human MMP-2 deletions. Analysis of the SAR of hundreds of previously prepared hydroxamate based MMP inhibitors lead us to 2-naphthylsulfonamide substituted hydroxamates which exhibited modest selectivity for MMP-13 versus MMP-2. This Letter describes the lead optimization of 1 and identification of inhibitors exhibiting >100-fold selectivity for MMP-13 over MMP-2.  相似文献   

18.
NorM is a member of the multidrug and toxic compound extrusion (MATE) family and functions as a Na+/multidrug antiporter in Vibrio parahaemolyticus, although the underlying mechanism of the Na+/multidrug antiport is unknown. Acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM are conserved in one of the clusters of the MATE family. In this study, we investigated the role(s) of acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM by site-directed mutagenesis. Wild-type NorM and mutant proteins with amino acid replacements D32E (D32 to E), D32N, D32K, E251D, E251Q, D367A, D367E, D367N, and D367K were expressed and localized in the inner membrane of Escherichia coli KAM32 cells, while the mutant proteins with D32A, E251A, and E251K were not. Compared to cells with wild-type NorM, cells with the mutant NorM protein exhibited reduced resistance to kanamycin, norfloxacin, and ethidium bromide, but the NorM D367E mutant was more resistant to ethidium bromide. The NorM mutant D32E, D32N, D32K, D367A, and D367K cells lost the ability to extrude ethidium ions, which was Na+ dependent, and the ability to move Na+, which was evoked by ethidium bromide. Both E251D and D367N mutants decreased Na+-dependent extrusion of ethidium ions, but ethidium bromide-evoked movement of Na+ was retained. In contrast, D367E caused increased transport of ethidium ions and Na+. These results suggest that Asp32, Glu251, and Asp367 are involved in the Na+-dependent drug transport process.  相似文献   

19.
Biliverdin reductase (molecular form 1, EC 1.3.1.24, bilirubin:NAD(P)+ oxidoreductase) carries three thiol residues. Only one of them could be alkylated when a ratio N-ethylmaleimide (NEM)/mol enzyme's SH = 90 was used. The alkylation of this thiol group inhibited the conversion of molecular form 1 to its dimer, molecular form 3; however, it did not inhibit the enzymatic activity. At a ratio of NEM/enzyme's SH = 300, two thiol residues were alkylated and the activity of the enzyme was totally inhibited. The third thiol group could not be alkylated either by NEM or by iodoacetamide. Biliverdin as well as the co-substrate NADPH protected the thiol residue essential for the enzymatic activity from alkylation. Spectroscopic evidence was obtained that this thiol group binds covalently to the C-10 of biliverdin to form a rubinoid adduct. The presence of a lysine residue, which is also essential for the enzymatic activity, could be inferred from the fact that by reduction of the Schiff base formed by the enzyme with pyridoxal phosphate the catalytic activity was irreversibly abolished. The location of a lysine residue in the vicinity of the thiol group involved in the catalytic activity was evident when the enzyme was treated with o-phthalaldehyde. The inactivation of the enzymatic activity was coincident with the formation of the fluorescent isoindole derivative which originates when the thiol and epsilon-NH2 groups are located about 3 A apart. The presence of a positively charged ammonium ion in the vicinity of the NADPH binding site was inferred from the shifts in the UVmax of NADPH from 340 nm to 327 nm and of 3-acetyl NADPH from 360 nm to 348 nm when the pyridine nucleotides bind to the reductase. The involvement of arginine residues in the enzymatic activity was established by inhibition of the latter after reaction with butanedione. This inhibition was totally protected by NADPH but not by biliverdin. The similarity of the structural features of biliverdin reductase with those of several dehydrogenases is discussed.  相似文献   

20.
By regulating matrix metalloproteinase (MMP) activity and controlling the breakdown of extracellular matrix components, tissue inhibitors of metalloproteinases (TIMPs) play an important role in the process of tumor invasion and metastasis. The present study was designed to clarify the role of TIMP-2 in nasopharyngeal carcinoma (NPC) patients and to evaluate its importance relative to clinicopathologic parameters. It was carried out in 30 patients with NPC and 20 controls. Tissue biopsies were studied and graded pathologically, and Western blot analysis was performed to assess TIMP-2 protein expression. Clinically, in accordance with TNM classification (T: tumor size, N: lymph node involvement, M: distant metastasis), 8 cases were diagnosed as stage II, 12 as stage III, and 10 cases as stage IV; however, pathologic typing with use of the World Health Organization (WHO) classification revealed the presence of 9 specimens of squamous cell carcinoma (WHO type 1), 6 cases of nonkeratinizing carcinoma (WHO type 2), and 15 cases of undifferentiated carcinoma (WHO type 3). The difference in percentage of TIMP-2 positivity between NPC patients (76.6%) and normal controls (30%) was statistically highly significant (P < .01). In addition, there was a significant positive correlation between TIMP-2 protein positivity and either the clinical staging or the histopathologic typing (P < .01) using Chi-square test (x(2)), suggesting that TIMP-2 can be used as a marker of the severity of NPC.Accordingly, we can assume that TIMP-2 may play a role in regional lymph node and/or distant metastasis and in progression of squamous cell carcinoma. Further studies are needed to investigate the role of TIMP-2 as a marker for tumor progression and to evaluate its potential value in the follow-up of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号