首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
A novel serine carboxypeptidase (EC 3.4.16.1) was found in an Aspergillus oryzae fermentation broth and was purified to homogeneity. This enzyme has a molecular weight of ca. 67,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its specific activity is 21 U/mg for carbobenzoxy (Z)-Ala-Glu at pH 4.5 and 25 degrees C. It has a ratio of bimolecular constants for Z-Ala-Lys and Z-Ala-Phe of 3.75. Optimal enzyme activity occurs at pH 4 to 4.5 and 58 to 60 degrees C for Z-Ala-Ile. The N terminus of this carboxypeptidase is blocked. Internal fragments, obtained by cyanogen bromide digestion, were sequenced. PCR primers were then made based on the peptide sequence information, and the full-length gene sequence was obtained. An expression vector that contained the recombinant carboxypeptidase gene was used to transform a Fusarium venenatum host strain. The transformed strain of F. venenatum expressed an active recombinant carboxypeptidase. In F. venenatum, the recombinant carboxypeptidase produced two bands which had molecular weights greater than the molecular weight of the native carboxypeptidase from A. oryzae. Although the molecular weights of the native and recombinant enzymes differ, these enzymes have very similar kinetic parameters.  相似文献   

2.
A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively.  相似文献   

3.
An acid proteinase from Aspergillus oryzae was isolated from a commercial powder by successive (NH4)2SO4 fractionation, acetone precipitation, and ion-exchange chromatography on phosphate- and DEAE-cellulose columns. The purified enzyme was found to be homogeneous by ultracentrifuge-sedimentation analysis (S20, W equal 3.63S), but electrofocusing in polyacrylamide gels and electrophoresis at pH 3.2 revealed that it consists of two very closely migrating bands. No difference in the amino acid composition and enzymic activities of the two partially separated bands could be detected, and it was concluded that the acid proteinase exists in two molecular forms. The enzyme activates bovine trypsinogen and chymotrypsinogen at pH 3.5 (the kappacat. and Km values at 35degrees C are 11.3S- minus 1, 0.10mM and 1.14S- minus 1, 0.18mM respectively). It hydrolyses the Phe-Phe bond of the synthetic pepsin substrates Z-His-Phe-Phe-OEt (kappacat. equal 1.65S- minus 1, Km equal 0.640mM at pH 3.5, 30degrees C) and Z-Ala-Ala-Phe-Phe-OPy4Pr (kappacat. equal 0.37S- minus 1, Km equal 0.037 mM at pH2.9, 39degrees C), where Z represents benzyloxycarbonyl and OPy4Pr represents 3-(4-pyridyl)-propyl 1-ester. Activation of bovine chymotrypsinogen results from the cleavage of the Arg(15)-Ile(16) bond in the zymogen. No other cleavages were observed. The use of A. oryzae proteinase provides a simple tool for the production of pi-chymotrypsin in good yield and purity.  相似文献   

4.
An action for various peptides and a kinetic study for amino acid p-nitroanilides (pNAs) and 4-methylcoumaryl-7-amides (MCAs) were performed with purified aminopeptidase from the mid-gut of the scallop. The enzyme preferred dipeptides having Ala, Met, and Phe in the amino-terminal or the penultimate position from the amino-termini. The catalytic efficiencies, k(cat)/K(m) values for Ala-pNA and MCA were the highest in the tested substrates, and those for pNA and MCA substrates having Met or Phe were the next highest. The enzyme was found to be a new alanine-specific aminopeptidase.  相似文献   

5.
A novel cellobiase (Cba2) was purified from the culture supernatant of Cellulomonas biazotea and characterized. Cba2 appeared to be a major secretory cellobiase in C. biazotea as its enzymatic activity was estimated to represent over 40% of the total extracellular beta-glucosidase activity. The enzyme was purified over 260-fold subsequent to ammonium sulfate precipitation, gel-filtration chromatography, anion-exchange chromatography, and reversed-phase high-performance liquid chromatography. Cba2 was shown by SDS-PAGE to have a large molecular mass of 109 kDa, which makes it one of the largest secretory cellobiases characterized. Its homogeneity was confirmed by N-terminal amino acid sequencing. The K(m) and V(max) values were 0.025 mM and 0.0048 mM min(-1), respectively, for the Cba2 hydrolysis of p-nitrophenyl-beta-d-glucopyranoside, and 0.73 mM and 0.00033 mM min(-1), respectively, for the hydrolysis of cellobiose (at 37 degrees C and pH 7.0). The purified enzyme has a pH optimum of 4.8 and the optimum temperature for activity is 70 degrees C. In view of the secretory nature of Cba2 and the fact that it is a major component of secretory cellobiases of C. biazotea, it is potentially important in the enzymatic degradation of cellulose, and its availability as a recombinant protein may facilitate the studies of its biotechnological applications.  相似文献   

6.
A surface-bound aminopeptidase of Lactobacillus lactis cells was solubilized with lysozyme, and the extract was subjected to streptomycin sulfate precipitation, ammonium sulfate fractionation, chromatography on Sephadex G-100 and diethylaminoethyl-Sephadex A-50, and preparative polyacrylamide gel electrophoresis. The purified enzyme was homogeneous in disc electrophoretic analysis and consisted of a single polypeptide chain with a molecular weight of 78,000 to 81,000. The optimal pH and optimal temperature for enzyme activity were 6.2 to 7.2 and 47.5 degrees C, respectively, for l-lysine-4-nitroanilide as the substrate. The enzyme was activated by Co and Zn ions and inhibited by Cu, Hg, and Fe ions and by the metal-complexing reagents ethylenediaminetetraacetic acid, 1,10-phenanthroline, and alpha,alpha'-dipyridyl. Higher concentrations of substrate and hydrolysis products also inhibited the activity of the enzyme. The aminopeptidase had broad substrate specificity and hydrolyzed many amino acid arylamides and many peptides with unsubstituted NH(2)-terminal amino acids.  相似文献   

7.
An enzymatic method for hydrolyzing bovine milk proteins was developed. Purified milk proteins (alpha-lactalbumin, beta-lactoglobulin, and beta-casein) were hydrolyzed in 0.1 M Hepes buffer (pH 7.5) containing pronase E, aminopeptidase M, and prolidase at 37 degrees C for 20 h. Free glutamine and other amino acids were derivatized with phenylisothiocyanate and separated using a C18 Pico-Tag column. Amino acids were eluted from the column with an aqueous sodium acetate-acetonitrile gradient with detection at 254 nm. Glutamine recoveries from hydrolyzed alpha-lactalbumin, beta-lactoglobulin, and beta-casein were 78 +/- 4, 98 +/- 3, and 101 +/- 3% of the theoretical values, respectively. The recoveries of most amino acids were comparable with those obtained using acid hydrolysis, except for the recoveries of proline and acidic amino acids. These peptide bonds appeared to be resistant to enzymatic hydrolysis and also to inhibit the hydrolysis of adjacent amino acids. Free glutamine was found to be very stable (97% recovery) under the enzymatic hydrolysis conditions.  相似文献   

8.
9.
The proteolytic system of lactic acid bacteria is essential for bacterial growth in milk but also for the development of the organoleptic properties of dairy products. Streptococcus thermophilus is widely used in the dairy industry. In comparison with the model lactic acid bacteria Lactococcus lactis, S. thermophilus possesses two additional peptidases (an oligopeptidase and the aminopeptidase PepS). To understand how S. thermophilus grows in milk, we purified and characterized this aminopeptidase. PepS is a monomeric metallopeptidase of approximately 45 kDa with optimal activity in the range pH 7.5-8.5 and at 55 degrees C on Arg-paranitroanilide as substrate. PepS exhibits a high specificity towards peptides possessing arginine or aromatic amino acids at the N-terminus. From the N-terminal protein sequence of PepS, we deduced degenerate oligonucleotides and amplified the corresponding gene by successive PCR reactions. The deduced amino-acid sequence of the PepS gene has high identity (40-50%) with the aminopeptidase T family from thermophilic and extremophilic bacteria; we thus propose the classification of PepS from S. thermophilus as a new member of this family. In view of its substrate specificity, PepS could be involved both in bacterial growth by supplying amino acids, and in the development of dairy products' flavour, by hydrolysing bitter peptides and liberating aromatic amino acids which are important precursors of aroma compounds.  相似文献   

10.
Summary

A supernatant from eggs of the ruminant nematode Trichostrongylus colubriformis contained an enzyme that was similar to leucine aminopeptidase (LAP), based on hydrolysis of the substrate L-leucine β-naphthylamide to β-naphthylamine. A Michaelis-Menten constant (K m) of 0.155 mM was obtained. Rate of hydrolysis of 16 substrates revealed that L-phenylalanine and L-tyrosine β-naphthylamides were hydrolyzed most readily while seven additional substrates were hydrolyzed at lesser rates. The optimum pH for enzymatic activity was 6.75–7.5. Enzymatic activity was lost by heating the egg supernatant to 60°C for 5 min or freezing at 0°C for 28 days. Addition of millimolar concentrations of the chlorides of zinc, manganese and magnesium to the egg supernatant had no stimulatory effect on enzyme activity while 10 and 100 mM concentrations significantly reduced activity. Ethylenediamine tetraacetic acid at 10?4 M had no effect on enzymatic activity. Activity was inhibited by 10?4 M 1,10-phenanthroline, but the inhibition was reversed by zinc chloride at 10?3 M. Di-isopropylphosphofluoridate at 10?3 M reduced enzymatic activity moderately. Enzyme activity in egg supernatant increased 2.2-fold from 21 days to 60–90 days of a primary infection in the host while a 3.3-fold increase was found in primary versus secondary infections.  相似文献   

11.
A novel aminopeptidase with unique substrate specificity was purified from a culture broth of Sphingomonas capsulata. This is the first reported aminopeptidase to demonstrate broad substrate specificity and yet release glycine and alanine with the highest efficacy. On a series of pentapeptide amides with different N-terminal amino acids, this enzyme efficiently releases glycine, alanine, leucine, proline, and glutamate with the lowest turnover value of 370 min(-1) for glutamate. At pH 7.5 (pH optimum) and 25 degrees C, the kinetic parameters for alanine para-nitroanilide were found to be k(cat) = 7600 min(-1) and K(m) = 14 mm. For alanine beta-naphthylamide, they were k(cat) = 860 min(-1) and K(m) = 6.7 mm. Polymerase chain reaction primers were designed based upon obtained internal sequences of the wild type enzyme. The subsequent product was then used to acquire the full-length gene from an S. capsulata genomic library. An open reading frame encoding a protein of 670 amino acids was obtained. The translated protein has a putative signal peptide that directs the enzyme into the supernatant. A search of the amino acid sequence revealed no significant homology to any known aminopeptidases in the available data bases.  相似文献   

12.
A high-molecular-weight cysteine endopeptidase from rat skeletal muscle   总被引:2,自引:0,他引:2  
A cytosolic enzyme of high molecular weight (about 500 000), which attacks native or denatured proteins (inter alia, casein, globin and hexokinase) was purified about 1000-fold from mixed rat skeletal muscles, including muscles freed of mast cells by prior treatment of the animals with the degranulator, compound 48/80. Peptides of varying size were generated from radioactively labelled globin, but no free amino acids were formed; free tyrosine was also not released from azocasein. The pH optimum was 7.5 and the presence of an essential cysteine group was suggested because dithiothreitol (1 mM) stimulated the activity and N-ethylmaleimide (5 mM) and p-chloromercuriphenylsulphonic acid (1 mM) were inhibitors. The activity was markedly inhibited by Zn2+ but not by leupeptin, chymostatin or pepstatin. The enzyme was stabilized by ATP, at concentrations as low as 0.1 mM, against inactivation at 42 degrees C. The endopeptidase was clearly separated on gel chromatography from another large protease, also sensitive to Zn2+, but with marked aminopeptidase activity and the properties of hydrolase H. The activity levels of the protease, assayed after chromatography on Sepharose 6B of high-speed supernatant fractions, did not vary significantly in skeletal muscle samples which were derived from denervated, starved, diabetic or hyperthyroid animals, in all of which the abnormal physiological states expressed themselves as enhanced rates of tyrosine released by incubated soleus and extensor digitorum longus muscles. Nevertheless, the enzyme described here may be part of an ATP-dependent, multi-component proteolytic system similar to that already known to be present in reticulocytes.  相似文献   

13.
l-leucine aminopeptidase production by filamentous Aspergillus fungi   总被引:1,自引:0,他引:1  
AIMS: To screen various filamentous fungi belonging to Aspergillus spp. producing leucine and methionine aminopeptidases. METHODS AND RESULTS: Twenty-eight Aspergillus strains representing 14 species within the genus were screened for L-leucine aminopeptidase (LAP) production in two media in shake flask fermentation. Two Aspergillus sojae (NRRL 1988 and NRRL 6271) and one Aspergillus oryzae (NRRL 6270) strains were selected as the best producers for further studies. The peak LAP activities were 2.61, 2.59 and 1.30 IU ml(-1) for the three fungi on days 2, 5 and 4 respectively. In addition to LAP, L-methionine aminopeptidase (MAP) activity was also detected. Apart from submerged fermentation, the highest LAP yields by solid-state fermentation were 11.39, 17.40 and 13.02 IU g(-1) dry matter for the above fungi. The temperature and pH optimum of the enzyme was found to be in the range of 65-75 degrees C at pH 8.0-9.0 for all three fungi. Metal ions, Co(2+) and Fe(2+) in 2 mmol l(-1) concentration apparently enhanced the relative enzyme activity and heat stability. CONCLUSIONS: Two A. sojae (NRRL 1988 and NRRL 6271) and one A. oryzae (NRRL 6270) strains were found to be the best producers of LAP and MAP. The preliminary characterization studies revealed that the enzyme is considerably thermostable and belongs to the class metalloenzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: A good number of aspergilli were screened and the ability of the fungal aminopeptidase to release a particular N-terminal amino acid along with its high thermal stability, makes them interesting for controlling the degree of hydrolysis and flavour development for a wide range of substrate.  相似文献   

14.
A metal-dependent aminopeptidase (EC 3.4.11.-), designated APase Y, has been purified to homogeneity by conventional methods. The enzyme is composed of a single polypeptide chain with molecular mass of 102 kilodaltons, estimated by sodium dodecyl sulphate - polyacrylamide gel electrophoresis, with a blocked N-terminal amino acid. It possesses neither endopeptidase nor carboxypeptidase activity and is strongly inhibited by metal-chelating agents, Zn2+, and the protein inhibitor from Neurospora crassa. APase Y is insensitive to Cl anions, S--S reducing reagents, serine protease inhibitors, and the peptidase inhibitor benzamidine. Co2+, Hg2+, and p-chloromercuribenzoate can activate the enzyme up to 22, 20, and 55%, respectively. The holoenzyme is resistant to yeast endopeptidases A, B, and Y, whereas the apoenzyme (obtained after treatment with chelators) is susceptible to the serine endopeptidases B and Y. The enzyme catalyzes hydrolysis of most L peptides possessing free alpha-amino (or imino) group by stepwise removal of N-terminal residue. Peptides with L-leucine at the N terminus are cleaved preferentially. The enzyme is unable to catalyze hydrolysis of X--Pro type peptide bonds, and inefficiently hydrolyzes bonds between Asp--X and Glu--X. L-leucine p-nitroanilide hydrolyzes optimally at pH 8.2 with a Km value of 1 mM. The purified enzyme is stable during storage in 0.05 M phosphate buffer, pH 6.7, containing 40-50% glycerol, at -20 degrees C.  相似文献   

15.
An intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114, isolated from traditional Greek yoghurt, was purified by chromatography on DEAE-cellulose and Sephadex G-100. The enzyme had a molecular weight of 89,000. It was active over a pH range 4.5-9.5 and had optimum activity on L-lysyl-4-nitroanilide at pH 6.5 and 35 degrees C with Km = 1.80 mmol/l; above 55 degrees C the enzyme activity declined rapidly. The aminopeptidase was capable of degrading substrates by hydrolysis of the N-terminal amino acid; it had very low endopeptidase and no carboxypeptidase activity. The enzyme was strongly inactivated by EDTA. Serine and sulphydryl group reagents had no effect on enzyme activity.  相似文献   

16.
The hydrolysis of various oligopeptides in solution by intact Moniliformis moniliformis was examined using paper chromatographic analysis of the incubation medium. In the presence of transport inhibitors, the respective peptide sub-units and/or amino acid residues accumulated in the bathing medium. Only peptides with serine, methionine, leucine or alanine at the NH2-terminal end of the peptide were hydrolysed. There was no hydrolysis when these amino acids were located internally or at the COOH-terminus indicating genuine aminopeptidase activity of the class, alpha-aminoacylpeptide hydrolase. Hydrolysis was negligible when the NH2-terminus was arginine, aspartic acid, glutamic acid, glycine, histidine, lysine, phenylalanine, proline, tryptophan, tyrosine, or valine. In separate experiments, mediated uptake of 0.1 mM 3H-leucine by the worms in 2 min was inhibited 100% by 5 mM unlabelled leucine or tri-serine, but only partially inhibited by 5 mM Ser-Gly (66%), 10 mM Ser-Gly (74%), 5 mM Leu-Leu (69%), 10 mM Leu-Leu (70%), 5 mM Leu-Gly (58%) or 5 mM Met-Met (69%). Because the inhibitions produced by 5 mM Leu-Leu plus 5 mM Met-Met (79%) or 5 mM Leu-Leu plus 5 mM Ser-Gly (76%) were not additive, a single enzyme is indicated. The name serine aminopeptidase is proposed because of its preference for serine.  相似文献   

17.
J C Gripon 《Biochimie》1977,59(8-9):679-686
An alkaline aminopeptidase was isolated from the culture medium of Penicillium roqueforti. The enzyme was purified by ammonium sulfate precipitation, filtration on Bio-Gel P-100, chromatography on D.E.A.E.-cellulose and hydroxylapatite, filtration on Bio-Gel P-150 and electrofusing. The purified preparation was homogeneous on polyacrylamide gel electrophoresis at pH 8.5. The molecular weight of the enzyme was estimated to be about 35,000 daltons. The isoelectric point is 4.5. The optimum pH for L-leucine-p-nitroanilide hydrolysis is 8.0. At 35 degrees C the enzyme is stable between pH 6.0 and 7.0. Ethylenediamine tetraacetic acid and a sulfhydryl reagent (p-hydroxymercuribenzoate) inhibit the activity, but the enzyme is insensitive to diisopropylfluorophosphate. Hydrolysis of synthetic peptides shows that the enzyme releases apolar amino acids. Dipeptides are poorly hydrolyzed and Gly in penultimate or N-terminal position causes poor activity. The enzyme is able to cleave the N-terminal Arg-Pro bond of bradykinin.  相似文献   

18.
We describe the isolation and characterization of a gene (ptpA) from Streptomyces coelicolor A3(2) that codes for a protein with a deduced M(r) of 17,690 containing significant amino acid sequence identity with mammalian and prokaryotic small, acidic phosphotyrosine protein phosphatases (PTPases). After expression of S. coelicolor ptpA in Escherichia coli with a pT7-7-based vector system, PtpA was purified to homogeneity as a fusion protein containing five extra amino acids. The purified fusion enzyme catalyzed the removal of phosphate from p-nitrophenylphosphate (PNPP), phosphotyrosine (PY), and a commercial phosphopeptide containing a single phosphotyrosine residue but did not cleave phosphoserine or phosphothreonine. The pH optima for PNPP and PY hydrolysis by PtpA were 6.0 and 6.5, respectively. The Km values for hydrolysis of PNPP and PY by PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA was competitively inhibited by dephostatin with a Ki of 1.64 microM; the known PTPase inhibitors phenylarsine oxide, sodium vanadate, and iodoacetate also inhibited enzyme activity. Apparent homologs of ptpA were detected in other streptomycetes by Southern hybridization; the biological functions of PtpA and its putative homologs in streptomycetes are not yet known.  相似文献   

19.
Carboxypeptidase B was purified from the pyloric ceca of the starfish Asterias amurensis. The final enzyme preparation was nearly homogeneous in polyacrylamide gel electrophoresis and its molecular weight was estimated as approximately 34,000. The optimum pH and temperature of the enzyme for hydrolysis of benzoyl-glycyl-L-arginine were at approximately pH 7.5 and 55 degrees C, respectively. The enzyme was unstable at above 50 degrees C and at below pH 5.0. The enzyme was activated by Co(2+), but was inhibited by EDTA and Hg(2+). The N-terminal amino acid sequence of A. amurensis carboxypeptidase B was ASFDYNVYHSYQEIMNWITN.  相似文献   

20.
Trypsin-like proteases from the midgut of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae) were purified on an aprotinin-agarose column equilibrated with 0.01 M Tris-HCl containing 5 mM CaCl2 (pH 7.5). The yield was 66.7% with a purification factor of 107 and a final specific activity of 6.88 mM/min/mg protein with the substrate N-alpha-benzoyl-L-Arg-p-nitroanilide (L-BApNA). The purified fraction showed three bands with proteolytic activity and molecular weights of 66,000, 71,000 and 91,000 (sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE)). Enzyme specificity assays were carried out using seven synthetic peptides containing 13 amino acid residues, but differing only on the 5th residue (K, R, Y, L, W or P). Peptide cleavage takes place only with amino acids K or R at the 5th position, which is typical of trypsin. The partially purified enzymes hydrolyzed casein and the synthetic trypsin substrates L-BApNA and N-alpha-p-tosyl-L-Arg methyl ester (L-TAME). Higher activity was observed at pH 8.5 and 35 degrees C when using L-BApNA as substrate and at pH 8.0 and 30 degrees C when using L-TAME. Maximum enzyme activity against L-BApNA was obtained with 20 mM CaCl2 in the reaction mixture. The partially purified enzymes showing trypsin activity were sensitive to inhibition by ethylenediaminetetraacetic acid (EDTA), phenylmethyl sulphonyl fluoride (PMSF), N-alpha-tosyl-L-lysine chloromethyl ketone (TLCK), benzamidine and aprotinin. Highest inhibition was obtained with TLCK and benzamidine. KM values obtained were 0.32 mM for L-BApNA and 52.5 microM for L-TAME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号