首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus (HSV) has often been suggested as a suitable vector for gene delivery to the peripheral nervous system as it naturally infects sensory nerve terminals before retrograde transport to the cell body in the spinal ganglia where latency is established. HSV vectors might therefore be particularly appropriate for the study and treatment of chronic pain following vector administration by relatively noninvasive peripheral routes. However parameters allowing safe and efficient gene delivery to spinal ganglia following peripheral vector inoculation, or the long-term expression of delivered genes, have not been comprehensively studied. We have identified combinations of deletions from the HSV genome which allow highly efficient gene delivery to spinal dorsal root ganglia (DRGs) following either footpad or sciatic nerve injection. These vectors have ICP34.5 deleted and have inactivating mutations in vmw65. We also report that peripheral replication is probably necessary for the efficient establishment of latency in vivo, as fully replication-incompetent HSV vectors allow efficient gene expression in DRGs only after peripheral inoculation at a high virus dose. Very low transduction efficiencies are otherwise achieved. In parallel, promoters have been developed that allow the long-term expression of individual or pairs of genes in DRGs by using elements from the latently active region of the virus to confer a long-term activity onto a number of promoters which otherwise function only in the short term. This work further defines elements and mechanisms within the latently active region that are necessary for long-term gene expression and for the first time allows multiple inserted genes to be expressed from HSV vectors during latency.  相似文献   

2.
Three mutants of herpes simplex virus type 1 (HSV-1) were used to deliver and express the Escherichia coli lacZ gene in cells of the rat central nervous system. Because the lacZ gene was inserted in place of the genes encoding one of the immediate-early viral proteins ICP0 or ICP4 or the early viral protein thymidine kinase, these mutants were compromised or defective in their ability to replicate. All mutant vectors exhibited reduced pathogenesis in animals as compared to the wild type HSV-1 strain KOS. In all cases lacZ was under the control of immediate-early or early viral promoters that are active in the early phase of infection. Expression of beta-galactosidase was observed in cortical neurons following stereotactic inoculation of mutant viruses into adult rat brains; distinct patterns of expression were observed with each mutant vector. Injection of the ICP0 mutant in the frontal cortex and caudate nucleus resulted in beta-galactosidase expression in a substantial number of cells around the inoculation site and at some distance from it for 14 days, with maximum expression after 3 days. The ICP0 vector appeared to have reached the ipsilateral and contralateral cingulate cortex by retrograde transport. Following inoculations of the ICP4 and thymidine kinase vectors into the same brain regions, only a few cells in areas immediately adjacent to the injection track expressed beta-galactosidase and they did so for only a few days. These herpes virus-derived vectors provide a means for the in situ delivery and expression of specific genes in neurons in the central nervous system with little adverse effect on animals.  相似文献   

3.
Gene delivery using herpes simplex virus vectors   总被引:7,自引:0,他引:7  
Herpes simplex virus (HSV) is a neurotropic DNA virus with many favorable properties as a gene delivery vector. HSV is highly infectious, so HSV vectors are efficient vehicles for the delivery of exogenous genetic material to cells. Viral replication is readily disrupted by null mutations in immediate early genes that in vitro can be complemented in trans, enabling straightforward production of high-titre pure preparations of non-pathogenic vector. The genome is large (152 Kb) and many of the viral genes are dispensable for replication in vitro, allowing their replacement with large or multiple transgenes. Latent infection with wild-type virus results in episomal viral persistence in sensory neuronal nuclei for the duration of the host lifetime. Transduction with replication-defective vectors causes a latent-like infection in both neural and non-neural tissue; the vectors are non-pathogenic, unable to reactivate and persist long-term. The latency active promoter complex can be exploited in vector design to achieve long-term stable transgene expression in the nervous system. HSV vectors transduce a broad range of tissues because of the wide expression pattern of the cellular receptors recognized by the virus. Increasing understanding of the processes involved in cellular entry has allowed preliminary steps to be taken towards targeting the tropism of HSV vectors. Using replication-defective HSV vectors, highly encouraging results have emerged from recent pre-clinical studies on models of neurological disease, including glioma, peripheral neuropathy, chronic pain and neurodegeneration. Consequently, HSV vectors encoding appropriate transgenes to tackle these pathogenic processes are poised to enter clinical trials.  相似文献   

4.
Herpes simplex virus (HSV) has often been suggested for development as a vector, particularly for the nervous system. Considerable evidence has shown that for use of HSV as a vector, immediate-early (IE) gene expression must be minimized or abolished, otherwise such vectors are likely to be highly cytotoxic. Mutations of vmw65 which abolish IE promoter transactivating activity may also be included to reduce IE gene expression generally. However, when vmw65 mutations are combined with an IE gene deletion, such viruses are hard to propagate, even on cells which otherwise complement the IE gene deletion effectively. We have found that vmw65 mutants can be effectively grown on cell lines expressing equine herpesvirus 1 gene 12, a non-HSV homologue of vmw65 with little sequence similarity to its HSV counterpart. This prevents repair by homologous recombination of vmw65 mutations in the virus, which would occur if mutations were complemented by vmw65 itself. The gene 12 protein is not packaged into HSV virions, which is important if viruses grown on such cells are to be used as vectors. These results not only further strengthen the evidence for direct functional homology between and similar modes of action of the two proteins but have allowed the generation of gene 12-containing cell lines in which ICP4 and ICP27 expression is induced by virus infection (probably by ICP0) and which give efficient growth of viruses deficient in ICP27, ICP4, and vmw65 (the viruses also have ICP34.5/ORFP deleted). Efficient growth of such viruses has not previously been possible. As these viruses are highly deficient in IE gene expression generally, such virus-cell line combinations may provide an alternative to HSV vectors with deletions of all four of the regulatory IE genes which, for optimal growth, require cell lines containing all four IE genes but which are hard to generate due to the intrinsic cytotoxicity of each of the proteins.  相似文献   

5.
There is an enormous initiative to establish the genetic basis for disorders of brain function. Unfortunately, genetic intervention is not accomplished easily in the nervous system. One strategy is to engineer and deliver to neurons specialized viral vectors that carry a gene (or genes) of interest, thereby exploiting the natural ability of viruses to insert genetic material into cells. When delivered to brain cells, these vectors cause infected cells to increase the expression of the genes of interest. The ability to deliver genes into neurons in vitro and in vivo with herpes simplex virus (HSV) amplicon vectors has made it possible to carry out exactly these sorts of experiments. This technology has the potential to offer new insights into the etiology of a wide variety of neuropsychiatric disorders. We describe the use of HSV amplicon vectors to study Alzheimer disease, drug addiction, and depression, and discuss the considerations that enter into the use of these vectors both in vitro and in vivo. The HSV amplicon virus is a user-friendly vector for the delivery of genes into neurons that has come of age for the study of brain function.  相似文献   

6.
7.
Gene delivery and gene therapy with herpes simplex virus-based vectors   总被引:3,自引:0,他引:3  
Latchman DS 《Gene》2001,264(1):1-9
The development of efficient means of delivery genes in vivo is essential both for testing gene function in the intact animal and for human gene therapy procedures. A number of viral and non-viral gene delivery methods have been developed for this purpose. Of those herpes simplex virus (HSV)-based vectors have particular advantages for gene delivery to the nervous system including their ability to infect non-dividing neurones and establish asymptomatic latent infections. Moreover, considerable progress has been made, firstly, in disabling HSV vectors so as to prevent the damaging effects of wild type virus and secondly, to ensure long-term expression of the inserted transgene(s). These vectors thus offer a valuable tool for testing gene function in neuronal cells in vivo and may ultimately be safe enough for use in human gene therapy procedures.  相似文献   

8.
Herpes simplex virus (HSV) encephalitis was produced in mice from reactivation of latent virus. Two experimental models were used: the trigeminal model after corneal inoculation of HSV, and the hypoglossal model after tongue inoculation of HSV. In the trigeminal model, cyclophosphamide treatment induced reactivation of latent virus in ganglia but not in central nervous system tissue. Spread of the reactivated virus from ganglia to brain occurred only in mice deficient in anti-HSV antibody. In the hypoglossal model, sectioning of the hypoglossal nerve provoked chromatolysis in the corresponding central nervous system motor neurons and occasionally reactivated latent HSV in the brains of mice. These results suggest that HSV encephalitis can result from the spread of reactivated virus from ganglia to brain and also from in situ reactivation in brain.  相似文献   

9.
10.
Various regions of the brain have been successfully transduced by recombinant adeno-associated virus (rAAV) vectors with no detected toxicity. When using the cytomegalovirus immediate early (CMV) promoter, a gradual decline in the number of transduced cells has been described. In contrast, the use of cellular promoters such as the neuron-specific enolase promoter or hybrid promoters such as the chicken beta-actin/CMV promoter resulted in sustained transgene expression. The cellular tropism of rAAV-mediated gene transfer in the central nervous system (CNS) varies depending on the serotype used. Serotype 2 vectors preferentially transduce neurons whereas rAAV5 and rAAV1 transduce both neurons and glial cells. Recombinant AAV4-mediated gene transfer was inefficient in neurons and glial cells of the striatum (the only structure tested so far) but efficient in ependymal cells. No inflammatory response has been described following rAAV2 administration to the brain. In contrast, antibodies to AAV2 capsid and transgene product were elicited but no reduction of transgene expression was observed and readministration of vector without loss of efficiency was possible from 3 months after the first injection. Based on the success of pioneer work performed with marker genes, various strategies for therapeutic gene delivery were designed. These include enzyme replacement in lysosomal storage diseases, Canavan disease and Parkinson's disease; delivery of neuroprotective factors in Parkinson's disease, Huntington disease, Alzheimer's disease, amyotrophic lateral sclerosis, ischemia and spinal cord injury; as well as modulation of neurotransmission in epilepsy and Parkinson's disease. Several of these strategies have demonstrated promising results in relevant animal models. However, their implementation in the clinics will probably require a tight regulation and a specific targeting of therapeutic gene expression which still demands further developments of the vectors.  相似文献   

11.

Background

The delivery of therapeutic genes to the central nervous system (CNS) using viral vectors represents an appealing strategy for the treatment of nerve injury and disorders of the CNS. Important factors determining CNS targeting include tropism of the viral vectors and retrograde transport of the vector particles. Retrograde transport of equine anemia virus (EIAV)-based lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus RabERA strain from peripheral muscle to spinal motor neurons (MNs) was previously reported. Despite therapeutic effects achieved in mouse models of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the efficiency of this approach needs to be improved for clinical translation. To date there has not been a quantitative assessment of pseudotyped HIV-1-based lentiviral vectors to transduce MNs. Here, we describe quantitative tests to analyze the retrograde transport capacity of HIV-1 vectors pseudotyped with the G glycoprotein derived from Rabies and Rabies-related viruses (Lyssaviruses).

Methods

With a view toward optimizing the retrograde transport properties of HIV-1-based lentiviral vectors, we compared the glycoproteins from different enveloped viruses belonging to the Rhabdoviridae family, genus Lyssavirus, and evaluated their ability to transduce specific cell populations and promote retrograde axonal transport. We first tested the transduction performance of these pseudotypes in vitro in SH-SY5Y neuroblastoma cells, NSC-34 neuroblastoma-spinal cord hybrid cells, and primary mixed spinal cord and pure astrocyte cultures. We then analyzed the uptake and retrograde transport of these pseudotyped vectors in vitro, using Campenot chambers. Finally, intraneural injections were performed to evaluate the in vivo retrograde axonal transport of these pseudotypes.

Results

Both the in vitro and in vivo studies demonstrated that lentiviral vectors pseudotyped with the glycoprotein derived from the Rabies virus PV strain possessed the best performance and neuronal tropism among the vectors tested.

Conclusion

Our results indicate that HIV-1-based lentiviral vectors pseudotyped with the Rabies PV glycoprotein might provide important vehicles for CNS targeting by peripheral injection in the treatment of motor neuron diseases (MND), pain, and neuropathy.  相似文献   

12.
13.
Herpes simplex virus vectors for gene therapy   总被引:2,自引:0,他引:2  
Herpes simplex virus (HSV) has a number of advantages as a vector for delivering specific genes to the nervous system. These include its large size, wide host range, and its ability to establish long-lived asymptomatic infections in neuronal cells in which a specific region of the viral genome continues to be expressed. Unfortunately, the large size of this virus and difficulty in manipulating it has led to its use as a vector lagging behind that of other, smaller viruses such as the retroviruses. In addition, the virus's ability to replicate lytically in the brain, under some circumstances, causing encephalitis, has led to fears about its potential safety for ultimate use in humans. This review will discuss a number of new approaches that are aimed at rendering simpler the insertion of foreign genes into the virus and making it as safe as possible. Ultimately, these advances offer real hope for the use of HSV vectors in gene therapy procedures.  相似文献   

14.
Herpes simplex virus (HSV) ICP0 can effectively activate gene expression from otherwise silent promoters contained on persisting viral genomes. However, the expression of high levels of ICP0, as from ICP4(-) HSV type 1 (HSV-1) vectors, results in marked toxicity. We have analyzed the results of ICP0 expressed from an E1(-) E4(-) adenovirus vector (AdS.11E4ICP0) in which ICP0 expression is controlled from the endogenous adenoviral E4 promoter. In this system, the expression level of ICP0 was reduced more than 1,000-fold relative to the level of expression from HSV-1 vectors. This low level of ICP0 did not affect cellular division or greatly perturb cellular metabolism as assessed by gene expression array analysis comparing the effects of HSV and adenovirus vector strains. However, this amount of ICP0 was sufficient to quantitatively destroy ND10 structures as measured by promyelocytic leukemia immunofluorescence. The levels of adenovirus-expressed ICP0 were sufficient to activate quiescent viral genomes in trans and promote persistent transgene expression in cis. Moreover, infection of complementing cells with AdS.11E4ICP0 promoted viral growth and resulted in a 20-fold increase in the plaquing efficiency of d109, a virus defective for all five immediate-early genes. Thus, the low level expression of ICP0 from the E1(-) E4(-) adenovirus vector may increase the utility of adenovirus vectors and also provides a means to efficiently quantify and possibly propagate HSV vectors defective in ICP0. Importantly, the results demonstrate that the activation function of ICP0 may not result from changes in cellular gene expression, but possibly as a direct consequence of an enzymatic function inherent to the protein that may involve its action at ND10 resulting in the preferential activation of viral genomes.  相似文献   

15.
The identification of monogenic and complex genes responsible for neurological disorders requires new approaches for delivering therapeutic protein genes to significant numbers of cells in the central nervous system. A lentivirus-based vector capable of infecting dividing and quiescent cells was investigated in vivo by injecting highly concentrated viral vector stock into the striatum and hippocampus of adult rats. Control brains were injected with a Moloney murine leukemia virus, adenovirus, or adeno-associated virus vector. The volumes of the areas containing transduced cells and the transduced-cell densities were stereologically determined to provide a basis for comparison among different viral vectors and variants of the viral vector stocks. The efficiency of infection by the lentivirus vector was improved by deoxynucleoside triphosphate pretreatment of the vector and was reduced following mutation of integrase and the Vpr-matrix protein complex involved in the nuclear translocation of the preintegration complex. The lentivirus vector system was able to efficiently and stably infect quiescent cells in the primary injection site with transgene expression for over 6 months. Triple labeling showed that 88.7% of striatal cells transduced by the lentivirus vector were terminally differentiated neurons.  相似文献   

16.
Considerable interest has been focused on inducing RNA interference (RNAi) in neurons to study gene function and identify new targets for disease intervention. Although small interfering RNAs (siRNAs) have been used to silence genes in neurons, in vivo delivery of RNAi remains a major challenge limiting its applications. We have developed a highly efficient method for in vivo gene silencing in dorsal root ganglia (DRG) using replication-defective herpes simplex viral (HSV-1) vectors. HSV-mediated delivery of short-hairpin RNA (shRNA) targeting reporter genes resulted in highly effective and specific silencing in neuronal and non-neuronal cells in culture and in the DRG of mice in vivo including in a transgenic mouse model. We further establish proof of concept by demonstrating in vivo silencing of the endogenous trpv1 gene. These data are the first to show silencing in DRG neurons in vivo by vector-mediated delivery of shRNA. Our results support the utility of HSV vectors for gene silencing in peripheral neurons and the potential application of this technology to the study of nociceptive processes and in pain gene target validation studies.  相似文献   

17.
Herpes simplex virus (HSV)-derived vectors are currently being developed for the introduction of foreign DNA into neurons. HSV vectors can facilitate a range of molecular studies on postmitotic neurons and may ultimately be used for somatic cell gene therapy for certain neurologic diseases. In this article, the salient features of the pathogenesis and molecular biology of HSV relevant to its use as a vector are described, along with an overview of the methods used to derive these vectors. The accomplishments which have been made to date using the HSV vector system are discussed, with emphasis on the issues of this technology which remain to be addressed. HSV has the potential to be a most useful tool for neuronal cell transgenesis and it is likely that important neurobiological questions will be answered using this vector system.  相似文献   

18.
An expression cassette for green fluorescent protein was successfully inserted at a site near the 5' end of the genome of Borna disease virus (BDV). When introduced into a mutant virus with highly active polymerase, the foreign gene was strongly expressed in neurons of infected rats. Since BDV can establish long-term persistence in the central nervous system of rodents, it may be used to engineer efficient vectors for specific delivery of foreign genes into highly differentiated neurons.  相似文献   

19.
Herpes simplex virus type-1 (HSV-1) is a neurotrophic human pathogen that establishes life-long latency in the nervous system. Our laboratory has extensively engineered this virus to retain the ability to persist in neurons without expression of lytic genes or disease phenotype. Highly defective, replication-incompetent HSV mutants are thus potentially ideal for transfer of therapeutic transgenes to human nerves where long-term therapy of nervous system disease may be provided. A prerequisite for using recombinant HSV vectors for therapeutic gene delivery to humans is the development of methods for large-scale manufacture of HSV vectors. Here we report studies to identify infection parameters that result in high-yield production of immediate early gene deletion mutant HSV vectors in complementing cells that supply the deleted essential viral functions in trans. Virus yield was correlated with various culture media conditions that included pH, glucose metabolism, and serum levels. The results demonstrated that systematic media exchange to remove lactate derived from high-level glucose consumption, maintenance of tissue culture pH at 6.8, and the use of 5% fetal bovine serum gave the highest yield of infectious virus. The data indicate that these are important parameters to consider for high-yield, large-scale virus production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号