首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the alloplasmic cytoplasmic male sterility (CMS) systems are known to be associated with a number of floral abnormalities that result from nuclear-cytoplasmic incompatibilities. One such system, tour, which is derived from Brassica tournefortii, induces additional floral abnormalities and causes chlorosis in Brassica spp. While the restorer for this CMS has been reported to be present in B. napus, in B. juncea, where the abnormalities are more pronounced, no restorer has yet been identified. Rectification of these floral abnormalities through mitochondrial recombinations and chloroplast replacement might result in the improvement of this CMS system. As organelle recombinations can possibly be achieved only by somatic cell hybridization, fusion experiments were carried out between hygromycin-resistant B. juncea AABB carrying tour cytoplasm and phosphinotricin-resistant, normal B. oleracea CC to generate AABBCC hexaploid somatic hybrids. The presence of selectable marker genes facilitated the selection of hybrids in large numbers. The resulting hybrids showed wide variation in floral morphology and organelle composition. Regenerants with normal, male-sterile flowers having recombinant tour-or oleracea-type mitochondria and oleracea-type chloroplasts were obtained. Hybrids with male-fertile flowers were also obtained that had recombined tour mitochondria. The AABBCC hexaploid hybrids synthesized in the present study were successfully utilized as a bridging material for transferring variability in the organelle genome simultaneously to all the digenomic Brassica species, and all of these hybrids are now being stabilized through repeated backcrosses to the allopolyploid crop brassicas.  相似文献   

2.
Doubled haploid (DH) progeny from a cross between the scald susceptible barley (Hordeum vulgare L.) cultivar Ingrid and the resistant accession CI 11549 (Nigrinudum) was evaluated for resistance in the pathogen Rhynchosporium secalis (Oudem) J.J. Davis. Two linked and incompletely dominant loci confer resistance CI 11549 against isolate 4004. One is an allele at the complex Rrs1 locus on chromosome 3H close to the centromere; the other is located 22 cM distally on the long arm. The latter locus is designated Rrs4. In BC3-lines into Ingrid from CI 2222 (another Nigrinudum) resistance seems governed by one locus close to the telomeric region of chromosome 7H, probably allelic to Rrs2. In neither case did we find any trace of the recessive gene rh8 reported to be present in Nigrinudum. Various resistance donors of Ethiopian origin designated as Nigrinudum, Jet or Abyssinian were identical to a great extent with respect to markers, but differed in resistance to different isolates of scald or in barley yellow dwarf virus (BYDV) resistance. The implications for their use as differentials in scald tests and screening of germplasm collections are discussed.  相似文献   

3.
Summary Meiotic pairing in Triticum turgidum cv. Ma (4x) with a mean chiasmata frequency of 27.16 per cell was compared with chiasmata frequencies in its hybrids with several triticale strains, Chinese Spring wheat and its addition lines for Imperial rye chromosomes 4R and 6R. In hybrids between Ma and x Triticosecale cv. Rosner the chiasmata frequency was marginally reduced by an average of 1.25%, by 8.8% in hybrids with x Triticosecale cv. DRIRA HH and by 6.7% with DRIRA EE (lacking 90% telomeric heterochromatin from chromosome arm 7RL). In pentaploid hybrids between Ma and T. aestivum cv. Chinese Spring the reduction was an average of 10.30%, while addition lines with rye chromosome 6R reduced chiasmata frequencies by an average of 7.4% and rye addition line for 4R showed the greatest depression in chiasmata frequency in hybrids by a 25.04% reduction. An interchange difference involving long chromosome segments was observed between Ma and Rosner.Contribution No. 819 Ottawa Research Station  相似文献   

4.
Summary In the progeny of a hybrid between monotelosomic line 3B of Chinese Spring wheat and Chinese Spring — Aegilops longissima ditelosomic addition line G a cytologically stable strain was selected consisting of 20 wheat chromosome pairs, one pair of telosomic chromosome 3BL and one pair of telosomic longissima chromosome G. Inoculating Chinese Spring — Aegilops longissima addition and substitution lines with ten different powdery mildew isolates, partial resistance was observed. The infection grade as well as the number of spores/cm2 leaf area were significantly reduced.  相似文献   

5.
Summary Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv Candle, n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.  相似文献   

6.
Summary Interspecific hybrids between Brassica napus and B. oleracea are difficult to produce, and previous attempts to transfer economic characters from one species to the other have largely been unsuccessful. In these studies, oilseed rape cv. Tower (2n38) (B. napus) was crossed with broccoli and kale (2n18) (B. oleracea), and hybrid plants were developed from embryos in culture by either organogenesis or somatic embryogenesis. In rape × broccoli, F1 plants were regenerated from hybrid embryos and the plants produced viable selfed seeds. F5 plants (2n38) homozygous for white flower colour were selected for high oil content (47%) and Line 15; a selection from these plants produced fertile hybrids with rape, broccoli and kale without embryo culture. In reciprocal crosses between oilseed rape cv. Tower and an aphid resistant diploid kale, 28 and 56 chromosome F1 hybrid plants were regenerated from somatic embryos. The 56 chromosome plants were self-fertile and it was concluded from F2 segregation ratios that a single dominant gene controls resistance to cabbage aphid in kale. The 28 chromosome F1's were self-sterile, but these and the 56 chromosome F1's could be backcrossed to rape and kale. A cross between the F1 (2n56) and a forage rape resulted in the selection of a cabbage aphid (Brevicoryne brassicae L.) resistant line (Line 3). Both Line 15 and Line 3 can serve as bridges for gene interchange between B. campestris, B. napus and B. oleracea, which has not been possible hitherto. Hybridisations between rape and tetraploid kale produced F1 plants with 37 chromosomes. One F2 plant possessed coronal scales and the inheritance was shown to be controlled by a single recessive gene unlinked to petal colour.This paper is dedicated to Mr. T. P. Palmer, a colleague and close friend who retired from the DSIR as Assistant Director of the Crop Research Division in September 1984  相似文献   

7.
A quantitative trait locus (QTL) controlling shoot differentiation from immature embryo callus was identified by linkage analysis with morphological and isozyme markers in barley, Hordeum vulgare L. Immature embryos were isolated from cvs Azumamugi (difficult to differentiate), Kanto Nakate Gold (easy to differentiate), their hybrids (F1) and a backcross population derived from a cross Azumamugi x F1. The embryos were cultured in vitro for callus initiation and subsequent shoot differentiation. The shoot differentiation rate was closely associated with ear type (v locus), isocitrate dehydrogenase isozyme (Idh-2), and esterase isozyme (Est-11). These markers were found to reside in a chromosome segment of approximately 30cM on chromosome 2. Recombination frequency was 9.9% between v and a proposed QTL named Shd1 (shoot differentiation), 11.5% between Idh-2 and Shd1, and 21.3% between Est-11 and Shd1. All data showed the Idh-2, v, Shdl and Est-11 loci to be arranged in this order from proximal to distal on the long arm of chromosome 2.  相似文献   

8.
As the first step in the transfer of barely yellow dwarf virus resistance and salt tolerance from decaploid tall wheatgrass (Thinopyrum ponticum) into hexaploid bread wheat (Triticum aestivum L.), octoploid intergeneric hybrids (2n = 8x = 56) were synthesized by crossing the tall wheatgrass cultivar Alkar with wheat cvs. Fukuhokomugi (Fuko) and Chinese Spring. (Fuko x Alkar) F1 hybrids were studied in detail. The F1 hybrids were perennial and generally resembled the male wheatgrass parent with regard to morphological features and gliadin profile. Most hybrids were euploid with 56 chromosomes and showed high chromosome pairing. On an average, in 6 hybrids 83.6% of the complement showed chiasmatic association, some between wheat and wheatgrass chromosomes. Such a high homoeologous pairing would be obtained if Ph1, the major homoeologous pairing suppressor in wheat, was somehow inactivated. Some of the Fuko x Alkar hybrids had high pollen fertility (18.5–42.0% with a mean of 31.5%) and high seed fertility (3–29 seeds wtih a mean of 12.3 seeds per spike), offering excellent opportunities for their direct backcrossing onto the wheat parent.  相似文献   

9.
Summary The inheritance of resistance to brown planthopper, Nilaparvata lugens (Stol.), of 20 rice cultivars was studied. Single dominant genes that are allelic to Bph 3 condition the resistance in cultivars Ptb 19, Gangala (Acc. 7733), Gangala (Acc. 15207), Horana Mawee, Kuruhondarwala, Mudu Kiriyal and Muthumanikam. Single recessive genes that are allelic to bph 4 govern the resistance in cultivars Gambada Samba, Heenhoranamawee, Hotel Samba, Kahata Samba, Kalukuruwee, Lekam Samba, Senawee, Sulai, Thirissa and Vellai Illankali. The resistance in Ptb 33, Sudu Hondarwala, and Sinna Sivappu is governed by one dominant and one recessive gene which segregate independently of each other. The dominant resistance genes in these cultivars appear allelic to either Bph 1 or Bph 3. Similarly, the recessive genes in these cultivars seem allelic to either bph 2 or bph 4. Further investigations are needed to conclusively determine the allelic relationships of resistance genes in Ptb 33, Sudu Hondarwala and Sinna Sivappu.  相似文献   

10.
Summary A study was made of the effect of genotype and temperature (25 and 17°C) on sex ratio in the hybrids D. virilis Sturt. X D. littoralis Sokolov. A genetic system has been found controlling sex-differential viability. In the F1 of the reciprocal hybrids D. virilis X D. littoralis the sex ratio is normal, though at 17°C females are slightly excessive. The abnormal sex ratio is observed only in the progeny of test crosses.The major gene causing the death of female progeny of the cross [ (, D. virilis x , D. littoralis) x D. virilis] x D. littoralis is located on chromosome 2 of D. virilis. It is expressed as a lethal if chromosome 5 is heterogeneous virilis-littoralis. Chromosome 3 of D. virilis bears a modifier-enhancer and chromosome 5, a suppressor, of this lethal found in chromosome 2. This genetic system has a maternal effect and functions at 25°C, interacting with the X-chromosome of D. littoralis. If the maintainance temperature is lowered to 17°C, the progeny of the cross hybrid FB1 x D. littoralis is predominantly female. Partial death of males is accounted for by a disturbance in the interaction between the genes of X-chromosome in certain combinations with the D. virilis autosomes and the Y-chromosome of the paternal species D. littoralis.Sex-differential mortality in the hybrids D. virilis x D. littoralis is one of the isolating factors between these species which does not appear to act until the second and subsequent F1 generations due to the formation of the recombination load.  相似文献   

11.
Summary A crossing programme for trispecific hybridization including cultivated barley (Hordeum vulgare L.) as the third parent was carried out. The primary hybrids comprised 11 interspecific combinations, each of which had either H. jubatum or H. lechleri as one of the parents. The second parent represented species closely or distantly related to H. jubatum and H. lechleri. In trispecific crosses with diploid barley, the seed set was 5.7%. Crosses with tetraploid barley were highly unsuccessful (0.2% seed set). Three lines of diploid barley were used in the crosses, i.e. Gull, Golden Promise and Vada. Generally, cv Gull had high crossability in crosses with related species in the primary hybrid. It is suggested that Gull has a genetic factor for crossability not present in cv Vada and cv Golden Promise. One accession of H. brachyantherum used in the primary hybrid had a very high crossability (seed set 54.7%) in combination with cv Vada but no viable offspring was produced. In all, two trispecific hybrids were raised, viz. (H. lechleri x H. brevisubulatum) x Gull (2n=7–30) and (H. jubatum x H. lechleri) x Gull (2n=20–22). The first combination invariably had a full complement of seven barley chromosomes plus an additional chromosome no. 7, but a varying number of chromosomes (19–22) of the wild-species hybrid. The second combination had a full set of barley chromosomes. The meiotic pairing was low in both combinations.  相似文献   

12.
Wheat microspores mechanically isolated from the anthers before culture and isolated from the anthers during the hole culture period in a chemically defined medium resulted in proembryos, embryos and finally plants. Of the four genotypes included, all responded with proembryos, and the two spring wheats Ciano and Walter gave rise to macroscopic embryos and plants. The frequency of embryo regeneration and the frequency of albino plants in both Ciano and Walter was in accordance with previously obtained results with anther culture derived material.Abbreviations 2,4-d 2,4-dichlorophenoxy acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

13.
Summary The ability of immature embryos of wheat (Triticum aestivum L.) to respond in cell culture was examined in crosses between the Wichita monosomic series and a highly regenerable line, ND7532. Segregation in disomic controls and 13 monosomic families showed a good fit to a monogenic ratio indicating a qualitative mode of inheritance. Segregation in the cross involving monosomic 2D showed a high frequency of regeneration (93.6%) and high callus growth rate (1.87 g/90 days) indicating that 2D is a critical chromosome. Modifying genes may be located on other chromosomes. Substitution of chromosomes from a low regenerable cultivar Vona further indicated that the group 2 chromosomes, in particular chromosome 2D, possess genetic factors promoting callus growth and regeneration.  相似文献   

14.
Ten previously unreported oligosaccharides have been purified from the urines of human subjects using a combination of gel filtration, ion exchange, and thin-layer chromatographies. Their structures were determined by direct probe mass spectrometry, methylation analysis, and proton NMR spectroscopy of the permethylated oligosaccharide alditols.On the basis of composition, the oligosaccharides could be divided into three groups. Five oligosaccharides containing glycerol were characterized as glucosyl1-1glycerol; glucosyl1-1glycerol; galactosyl1-1glycerol; glucosyl-1-1(fucosyl-1-2)glycerol and/or fucosyl-1-1(glucosyl-1-2)glycerol; and glucosyl-1-1(galactosyl-1-2)glycerol or galactosyl-1-1(glucosyl-1-2)glycerol. Four inositol-containing oligosaccharides were characterized as galactosyl1 (fucosyl1)inositol,N-acetylgalactosaminyl1 (fucosyl1)inositol, fucosyl1-2galactosyl1 (N-acetylgalactosaminyl1)inositol and fucosyl1-2galactosyl1-4-N-acetylglucosaminyl1(N-acetylgalactosaminyl1)inositol. Finally, galactosyl1-3(fucosyl1-2)galactosyl1-6galactosyl1-4(fucosyl1-3)glucose, an oligosaccharide with glucose at its reducing end, was tentatively identified. The significance and possible origins of the carbohydrate structures are discussed.  相似文献   

15.
Three new major, race-specific, resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) were identified in three barley lines, RS42-6*O, RS137-28*E, and HSY-78*A, derived from crosses with wild barley (Hordeum vulgare ssp. spontaneum). The resistance gene origining from wild barley in line RS42-6*O, showed a recessive mode of inheritance, whereas the other wild barley genes were (semi)-dominant. RFLP mapping of these three genes was performed in segregating F2 populations. The recessive gene in line RS42-6*O, was localized on barley chromosome 1S (7HS), while the (semi)-dominant genes in lines RS137-28*E, and HSY-78*A, were localized on chromosomes 1L (7HL) and 7L (5HL), respectively. Closely linked RFLP clones mapped at distances between 2.6cM and 5.3 cM. Hitherto, specific loci for powdery mildew resistance in barley had not been located on these chromosomes. Furthermore, tests for linkage to the unlocalized resistance gene Mlp revealed free segregation. Therefore, these genes represent new loci and new designations are suggested: mlt (RS42-6*O), Mlf (RS137-28*E), and Mlj (HSY-78*A). Comparisons with mapped QTLs for mildew resistance were made and are discussed in the context of homoeology among the genomes of barley (H-vulgare), wheat (Triticum aestivum), and rye (Secale cereale). Duplications of RFLP bands detected in the neighbourhood of Mlf and mlt might indicate an evolutionary interrelationship to the Mla locus for mildew resistance.  相似文献   

16.
Black rot caused by the bacterium Xanthomonas campestris pv campestris is one of the most serious diseases of Brassica oleracea. Since sources of resistance to the disease within B. oleracea are insufficient and control means are limited, the development of resistant breeding lines is extremely desirable. Certain lines of B. napus contain very high resistance controlled by a dominant gene, but crossing the two species sexually is very difficult. Therefore, somatic hybrids were produced by protoplast fusion between rapid cycling B. oleracea and a B. napus line highly resistant to X. campestris pv campestris. Hybrid identity was confirmed by morphological studies, flow cytometric estimation of nuclear DNA content, and analysis of random amplified polymorphic DNA (RAPD). Inoculations with the pathogen identified four somatic hybrids with high resistance. The resistant hybrid plants were fertile and set seed when selfed or crossed reciprocally to the bridge line 15 (Quazi 1988). Direct crosses to B. oleracea were unsuccessful, but embryo rescue facilitated the production of a first-backcross generation. The BC1 plants were resistant to the pathogen. Progeny from the crosses to line 15 were all susceptible. Embryo rescue techniques were not obligatory for the development of a second-backcross generation, and several resistant BC2 plants were obtained.  相似文献   

17.
A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known -amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable -amylase. The half-time of inactivation of this -amylase was 5.1 h at 80°C and 2.4 h at 90°C. The temperature optimum for activity of the -amylase was 70°C; the pH optimum for activity was relatively low, in the range 5.5–6.0. -Amylase synthesis was regulated by induction and repression mechanisms. An inverse relationship was found between growth rate and -amylase production. Low starch concentrations and low growth temperatures were favourable for enzyme production by the organism. At the optimal temperature for growth, 65°C, the -amylase was a growth-associated enzyme. The optimal temperature for -amylase production, however, was 40°C, with -amylase increasing from 3.9 units (U)/ml to 143 U/ml when lowering the growth temperature from 65°C to 40°C. Maximal -amylase production in a batch fermentor run at 65°C was 102 U/ml, which was 26-fold higher than in erlenmeyer flasks at 65°C. The dissolved O2 concentration was found to be a critical factor in production of the -amylase.  相似文献   

18.
2D NMR spectroscopy and J coupling constant analysis are applied to resolve the structure of two photoproducts of thymidylyl-(35)-thymidine. These products are cyclobutane type thymine dimers possessing the cis-syn (the predominant one) and trans-syn geometry. The cis-syn is formed in an ANTI-ANTI conformation about the N-glycosyl linkages and resembles the normal base-stacked configuration. The glycosidic conformation in solution of the 5 terminal fragment differs from the crystal in which the less common SYN conformation is observed. In this isomer only the sugar pucker of the 3 terminal fragment is changed substantially with respect to the dinucleotide. The trans-syn isomer is formed in a SYN-ANTI glycosidic conformation. In this isomer the sugar puckers of both deoxyribose rings are affected and a preference for a pure 2-endo conformation is observed.Abbreviations dTpdT 2-deoxythymidylyl-(35)-2-deoxythymidine - dTp[]dT cyclobutane type photodimers of dTpdT - dTp- and dTp[]- their 5' terminal fragments (fragment A) - -pdT and-[]pdT their 3 terminal fragments (fragment B) - RP-HPLC reversed-phase high-performance liquid chromatography - COSY two-dimensional correlated spectroscopy - 2D NOE two-dimensional nuclear Overhauser spectroscopy  相似文献   

19.
The wild crucifer Moricandia arvensis is a potential source of alien genes for the genetic improvement of related Brassica crops. In particular M. arvensis has a C3-C4 intermediate photosynthetic mechanism which results in enhanced recapture of photorespired CO2 and may increase plant water-use efficiency. In order to transfer this trait into Brassica napus, somatic hybridisations were made between leaf mesophyll protoplasts from cultured M. arvensis shoot tips and hypocotyl protoplasts from three Brassica napus cultivars, Ariana, Cobra and Westar. A total of 23 plants were recovered from fusion experiments and established in the greenhouse. A wide range of chromosome numbers were observed among the regenerated plants, including some apparent mixoploids. Thirteen of the regenerated plants were identified as nuclear hybrids between B. napus and M. arvensis on the basis of isozyme analysis. The phenotypes of these hybrids were typically rather B. napus-like, but much variability was observed, including variation in flower colour, leaf shape and colour, leaf waxiness, fertility and plant vigour. CO2 compensation point measurements on the regenerated plants demonstrated that 3 of the hybrids express the M. arvensis C3-C4 intermediate character at the physiological level. Semi-thin sections through leaf tissues of these 3 plants revealed the presence of a Kranz-like leaf anatomy characteristic of M. arvensis but not found in B. napus. This is the first report of the expression of this potentially important agronomic trait, transferred from Moricandia, in M. arvensis x B. napus hybrids.  相似文献   

20.
Summary The contribution of introgressed regions derived from wild species to the genetic variation within the species of Lycopersicon esculentum was investigated by comparing the RFLP patterns of 2 introgression-free, obsolete cultivars (Moneymaker and Premier) and a modern cultivar (Sonatine) that carries at least 5 introgressed resistance genes. In this analysis 195 mapped nuclear markers were used in combination with 6 restriction enzymes. Among the 1170 probe-enzyme combinations tested, only 3 showed a polymorphism between the 2 introgression-free cultivars. On the other hand 24 probe-enzyme combinations were found to exhibit polymorphisms between Moneymaker and Sonatine. These represented ten polymorphic loci distributed among 5 linkage groups on chromosomes 1, 3, 4, 6, and 9.On the assumption that most of the polymorphic loci corresponded to introgressed chromosome segments of wild species carrying resistance genes, linkages between these loci and the component resistance genes were examined by RFLP analysis of pairs of near-isogenic lines differing only for one particular resistance gene, and a variety of commercial cultivars having different resistance gene compositions. Two of the polymorphic linkage groups could thus be ascribed to resistance genes whose map positions were already known: Cf2 on chromosome 6 and Tm2a on chromosome 9, whereas another marker, TG301 on chromosome 1, could be assigned to the Cladosporium fulvum resistance gene Cf9 with a hitherto disputable map position. By linkage analysis of a segregating F2 population the genetic distance between the Cf9 gene and the marker TG301 was estimated at 5.5 ± 2.3 cM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号