首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Ovarian cancer is a silent killer as most patients have non-specific symptoms and usually present in advanced stage of the disease. It occurs due to certain genetic alterations and mutations namely founder mutations, 187delAG and 5385insC in BRCA1 and 6174delT in BRCA2 which are associated with specific family histories. These highly penetrant susceptibility genes responsible for approximately half of families containing 2 or more ovarian cancer cases account for less than 40% of the familial excess malignancy risk. The remaining risk may be due to single nucleotide polymorphisms (SNPs) which are single base change in a DNA sequence with usual alternatives of two possible nucleotides at a given position. Preliminary study involving 30 women with histologically proven epithelial ovarian cancer was conducted and their detailed genetic analysis was carried out. Regions of founder mutations on BRCA1 and BRCA2 were amplified and sequenced using primers designed based on 200 bp upstream and downstream regions of the mutation sites. Five sequence variants in BRCA1 were identified of which three novel sequence variants were found in 23 patients while in BRCA2, one novel sequence variant was found. The three founder mutations 187delAG, 5385insC in BRCA1 and 6174delT in BRCA2 were not seen in any of the subjects.  相似文献   

2.
3.
The conformation of NAD bound to diphtheria toxin (DT), an ADP-ribosylating enzyme, has been compared to the conformations of NAD(P) bound to 23 distinct NAD(P)-binding oxidoreductase enzymes, whose structures are available in the Brookhaven Protein Data Bank. For the oxidoreductase enzymes, NAD(P) functions as a cofactor in electron transfer, whereas for DT, NAD is a labile substrate in which the N-glycosidic bond between the nicotinamide ring and the N-ribose is cleaved. All NAD(P) conformations were compared by (1) visual inspection of superimposed molecules, (2) RMSD of atomic positions, (3) principal component analysis, and (4) analysis of torsion angles and other conformational parameters. Whereas the majority of oxidoreductase-bound NAD(P) conformations are found to be similar, the conformation of NAD bound to DT is found to be unusual. Distinctive features of the conformation of NAD bound to DT that may be relevant to DT''s function as an ADP-ribosylating enzyme include (1) an unusually short distance between the PN and N1N atoms, reflecting a highly folded conformation for the nicotinamide mononucleotide (NMN) portion of NAD, and (2) a torsion angle chi N approximately 0 degree about the scissile N-glycosidic bond, placing the nicotinamide ring outside of the preferred anti and syn orientations. In NAD bound to DT, the highly folded NMN conformation and torsion angle chi N approximately 0 degree could contribute to catalysis, possibly by orienting the C1''N atom of NAD for nucleophilic attack, or by placing strain on the N-glycosidic bond, which is cleaved by DT. The unusual overall conformation of NAD bound to DT is likely to reflect the structure of DT, which is unusual among NAD(P)-binding enzymes. In DT, the NAD binding site is formed at the junction of two antiparallel beta-sheets. In contrast, although the 24 oxidoreductase enzymes belong to at least six different structural classes, almost all of them bind NAD(P) at the C-terminal end of a parallel beta-sheet. The structural alignments and principal component analysis show that enzymes of the same structural class bind to particularly similar conformations of NAD(P), with few exceptions. The conformation of NAD bound to DT superimposes closely with that of an NAD analogue bound to Pseudomonas exotoxin A, an ADP-ribosylating toxin that is structurally homologous to DT. This suggests that all of the ADP-ribosylating enzymes that are structurally homologous to DT and ETA will bind a highly similar conformation of NAD.  相似文献   

4.
《Epigenetics》2013,8(11):1225-1229
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

5.
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

6.
Substitution of nicotinamide adenine dinucleotide dependent glucose-6-phosphate dehydrogenase for the nicotinamide adenine dinucleotide phosphate dependent enzyme has produced identical results in a number of enzyme-linked electrophoretic staining procedures. This substitution significantly reduces the cost of staining for adenylate kinase, creatine kinase, glucosephosphate isomerase, mannosephosphate isomerase, phosphoglucomutase, and pyruvate kinase activity by utilizing NAD rather than the more expensive NADP.  相似文献   

7.
Terrestrial plant pollen is classified into two categories based on its metabolic status: pollen with low-metabolism are termed “orthodox” and pollen with high-metabolism are termed “recalcitrant.” Nicotinamide adenine dinucleotide (NAD) is crucial for a number of metabolisms in all extant organisms. It has recently been shown that NAD homeostasis plays an important role in a broad range of developmental processes and responses to environment. Recently, a reverse genetic approach shed light on the significance of NAD biosynthesis on pollen fate. In orthodox Arabidopsis pollen, NAD+ that was accumulated in excess at dispersal dramatically decreased on rehydration. The lack of a key gene that is involved in NAD biosynthesis compromised the excess accumulation. Moreover, absence of the excess accumulation phenocopied the so-called recalcitrant pollen, as demonstrated by the germination inside anthers and the loss of desiccation tolerance. Upon rehydration, NAD+-consuming inhibitors impaired tube germination. Taken together, our results suggest that accumulation of NAD+ functions as a physiochemical molecular switch for suspended metabolism and that the decrease of NAD+ plays a very important role during transitions in metabolic states. Shifting of the redox state to an oxidizing environment may efficiently control the comprehensive metabolic network underlying the onset of pollen germination.  相似文献   

8.
Levanat S  Musani V  Cvok ML  Susac I  Sabol M  Ozretic P  Car D  Eljuga D  Eljuga L  Eljuga D 《Gene》2012,498(2):169-176
BRCA1 and BRCA2 genes from 167 candidates (145 families) were scanned for mutations. We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and 3 were novel (c.5335C>T in BRCA1 and c.4139_4140dupTT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. No founder mutations were detected for the Croatian population. Croatia shares most of the mutations with neighboring Slovenia and also with Germany, Austria and Poland. Two common sequence variants in BRCA1, c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. No difference in BRCA2 variants was detected between the groups. Haplotype inference showed no difference in haplotype distributions between deleterious mutation carriers and non-carriers in neither BRCA1 nor BRCA2. In silico analyses identified one BRCA1 sequence variant (c.4039A>G) and two BRCA2 variants (c.5986G>A and c.6884G>C) as harmful with high probability, and inconclusive results were obtained for our novel BRCA2 variant c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes. Benefit of BRCA1/2 mutation testing is clear, since we detected mutations in young unaffected women, who will be closely monitored for breast and ovarian cancer.  相似文献   

9.
10.
Ovarian cancer (OC) is among the leading causes of cancer-related mortality in women. A high risk of OC (lifetime estimates ranging 10–60%) is determined by BRCA1/2 mutations. The 1100delC variant of CHEK2 is associated with predisposition to breast cancer (BC) in women. With the known spectrum and frequencies of mutations of these genes, it is possible to identify a risk group in a population. Using biochip technology, the frequencies of eight BRCA1/2 and CHEK2 mutations (185delAG, 300T>G, 4153delA, 4158A>G, and 5382insC of BRCA1; 695insT and 6174delT of BRCA2; and 1100delC of CHEK2) were studied in Russian women with OC, including 68 patients with organ-specific OC and 19 with primary multiple tumors (PMTs) involving the ovaries. Four BRCA1 mutations were observed: 185delAG, 300T>G, 4153delA, and 5382insC. The last one was most common in OC, accounting for 87.5% of all cases with mutant BRCA1, and occurred at a frequency of 50.0% in PMT. BRCA2 and CHEK2 mutations were not found in the two groups.  相似文献   

11.
Dowex 1-formate has been found to cause both anomerization and oxidation of NADH, and when NADH is chromatographed on a column of this resin, the major products observed are NAD+ and αNAD+. Completing with the oxidation reaction is the conversion of NADH and α-NADH to unstable acid-modification products that subsequently break down during chromatography to give APD-ribose and and a variety of neutral and cationic degradation products. The effects of DOWEX 1-formate on NADH differ from those of acid as oxidation is minimal when NADH is incubated in acid solution, although anomerization, acid-modification, and degradation to ADP-ribose and other products readily occur. The neutral and cationic acid-degradation products that are formed from acid-modified NADH have been resolved by chromatography into 12 components, 6 of which react with 3-methyl-2-benzothiazolinone hydrazone and thus are identified as carbonyls. These substances gradually disappear from acid solution over a period of days and are replaced by polymeric pigments.  相似文献   

12.
BRCA1 mutations have long been associated with altered apoptosis. We have recently reported that caspase 3 activation is increased in human ovarian surface epithelial (OSE) cells expressing a germline N-terminal BRCA1 185delAG mutation. Here, we report increased caspase 3 activity in 185delAG OSE cells associated with decreased expression of cIAP-1 and X-linked inhibitor of apoptosis (XIAP), and decreased ubiquitination of caspase 3. Overexpression of XIAP restored active caspase 3 ubiquitination and lowered levels of caspase 3 activity. Further, the BRCA1 185delAG mutation was associated with reduced levels of phosphorylated Akt1. Transfection with activated Akt1 led to increased cIAP-1 and XIAP levels similar to that seen in BRCA1 185delAG cell lines. Taken together, these data suggest a direct link between the BRCA1 185delAG mutation and alterations in the caspase-mediated apoptotic pathway.  相似文献   

13.
BRCA1 plays an important role in maintaining genomic stability through its involvement in DNA repair. Although it is known that BRCA1 and RAD51 form distinct DNA repair subnuclear complexes, or foci, following environmental insults to the DNA, the role of BRCA1 in this process remains to be characterized. The purpose of the study was therefore to determine the role of BRCA1 in the formation of RAD51 foci following treatment with cisplatin and ionizing radiation. We found that although a functional BRCA1 is required for the subnuclear assembly of BRCA1 foci following treatment with either ionizing radiation or cisplatin, a functional BRCA1 is required for RAD51 foci to form following treatment with cisplatin but not with ionizing radiation. Similar results were obtained in SKOV-3 cells when the level of BRCA1 expression was knocked down by stable expression of a retrovirus-mediated small-interfering RNA against BRCA1. We also found that the carboxyl-terminal of BRCA1 contains uncharacterized phosphorylation sites that are responsive to cisplatin. The functional BRCA1 is also required for breast and ovarian cancer cells to mount resistance to cisplatin. These results suggest that the carboxyl-terminal of BRCA1 is required for the cisplatin-induced recruitment of RAD51 to the DNA-damage site, which may contribute to cisplatin resistance.  相似文献   

14.
15.
Oxygen consumption in the presence of cyanide was utilized as a measure of plasma membrane electron transport in Chinese hamster ovary (CHO) and human cervical carcinoma (HeLa) cell lines. Both intact cells and isolated plasma membranes carry cyanide-insensitive NADH(P)H oxidases at their external membrane surfaces (designated ECTO-NOX proteins). Regular oscillatory patterns of oxygen consumption with period lengths characteristic of those observed for rates of NADH oxidation by ECTO-NOX proteins were observed to provide evidence for transfer of protons and electrons to reduce oxygen to water. The oscillations plus the resistance to inhibition by cyanide identify the bulk of the oxygen consumption as due to ECTO-NOX proteins. With intact CHO cells, oxygen consumption was enhanced by but not dependent upon external NAD(P)H addition. With intact HeLa cells, oxygen consumption was inhibited by both NADH and NAD+ as was growth. The results suggest that plasma membrane electron transport from internal donors to oxygen as an external acceptor is mediated through ECTO-NOX proteins and that electron transport to molecular oxygen may be differentially affected by external pyridine nucleotides depending on cell type.  相似文献   

16.
17.
18.
目的观察结直肠癌中RAD51和BRCA1基因的表达,探讨二者与结直肠癌发生发展及治疗的关系。方法收集结直肠癌癌灶及癌旁正常组织各42例,采用免疫组织化学法及逆转录一聚合酶链反应(reverse transeription-PCR,RTPCR)检测标本组织中RAD51、BRCA1蛋白和mRNA的表达水平。分析RAD51、BRCA1在结直肠癌中的表达水平与临床病理特征的关系以及二者之间的相互关系。结果在结直肠癌组织中RAD51(33例,78.6%)、BRCA1(30例,71.4%)的表达较癌旁正常组织RAD51(7例,16.7%)、BRCA1(18例,42.9%)高(P〈0.05);结直肠癌中RAD51mRNA(0.51±0.26)和BRCA1 mRNA(O.70±0.96)的值较两者在正常组织中mRNA(0.10±0.22)高(P〈0.01);两者蛋白及mRNA的表达水平与性别、年龄、分化程度、TNM分期等均无统计学差异(P〉0.05);BRCA1与RAD51在结直肠癌中的表达水平成明显正相关(蛋白:r=0.731,P〈0.01mRNA:r=0.572,P〈0.01)。结论BRCA1与RAD51在结直肠癌组织中高表达,且二者的表达水平呈明显正相关;BRCAl与RAD51的表达异常可能与结直肠癌的发生发展有关。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号