共查询到18条相似文献,搜索用时 15 毫秒
1.
Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans. 相似文献
2.
Here, we report that inactivation of the Caenorhabditis elegans dynamin-related protein DRP-1, a key component responsible for mitochondrial fission and conserved from yeast to humans, dramatically enhanced the effect of reduced insulin signaling (IIS) to extend lifespan. This represents the first report of a beneficial impact of manipulating mitochondrial dynamics on animal lifespan and suggests that mitochondrial morphology and IIS cooperate to modulate aging. 相似文献
3.
LET-60 RAS modulates effects of insulin/IGF-1 signaling on development and aging in Caenorhabditis elegans 总被引:2,自引:0,他引:2
The DAF-2 insulin/insulin-like growth factor 1 (IGF-1) receptor signals via a phosphatidylinositol 3-kinase (PI3K) pathway to control dauer larva formation and adult longevity in Caenorhabditis elegans. Yet epistasis analysis suggests signal bifurcation downstream of DAF-2. We have used epistasis analysis to test whether the Ras pathway (which plays a role in signaling from mammalian insulin receptors) acts downstream of DAF-2. We find that an activated Ras mutation, let-60(n1046gf), weakly suppresses constitutive dauer diapause in daf-2 and age-1 (PI3K) mutants. Moreover, increased Ras pathway signaling partially suppresses the daf-2 mutant feeding defect, while reduced Ras pathway signaling enhances it. By contrast, activated Ras extends the longevity induced by mutation of daf-2, while reduced Ras pathway signaling partially suppresses it. Thus, Ras pathway signaling appears to act with insulin/IGF-1 signaling during larval development, but against it during aging. 相似文献
4.
Houthoofd K Fidalgo MA Hoogewijs D Braeckman BP Lenaerts I Brys K Matthijssens F De Vreese A Van Eygen S Muñoz MJ Vanfleteren JR 《Aging cell》2005,4(2):87-95
The insulin/insulin-like growth factor-1 (Ins/IGF-1) pathway regulates the aging rate of the nematode Caenorhabditis elegans. We describe other features of the three Ins/IGF-1 mutants daf-2, age-1 and aap-1. We show that the investigated Ins/IGF-1 mutants all have a reduced body volume, reduced reproductive capacity, increased ATP concentrations and an elevated stress resistance. We also observed that heat production is lower in these mutants, although the respiration rate was similar or higher compared with wild-type individuals, suggesting a metabolic shift in these mutants. 相似文献
5.
The nematode Caenorhabditis elegans is a powerful animal model for exploring the genetic basis of metazoan development. Recent genetic and biochemical studies have revealed that the molecular machinery of glycosaminoglycan (GAG) biosynthesis and modification is highly conserved between C. elegans and mammals. In addition, genetic studies have implicated GAGs in vulval morphogenesis and zygotic cytokinesis. The extensive knowledge of C. elegans biology, including its elucidated cell lineage, together with the completed and well annotated DNA sequence and availability of reverse genetic tools, provide a platform for studying the functions of proteoglycans and their GAG modification. Published in 2003. 相似文献
6.
7.
Yong Hai Nan Ka Hyon Park Yoonkyung Park Young Jin Jeon Yangmee Kim Il-Seon Park Kyung-Soo Hahm & Song Yub Shin 《FEMS microbiology letters》2009,292(1):134-140
To investigate the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin (IN), a series of IN analogs with Trp→Lys substitution were synthesized. All IN analogs displayed an approximately 7- to 18-fold higher cell selectivity, compared with IN. IN, IN-1 and IN-2 depolarized (50−90%) the cytoplasmic membrane potential of Staphylococcus aureus close to minimal inhibitory concentration (5–10 μg mL−1 ). However, other IN analogs (IN-3 and IN-4) displayed very low ability in membrane depolarization even at 40 μg mL−1 . Confocal laser-scanning microscopy revealed that IN-3 and IN-4 penetrated the Escherichia coli cell membrane, whereas IN, IN-1 and IN-2 did not enter the cell membrane. In the gel retardation assay, IN-3 and IN-4 bound more strongly to DNA compared with IN, IN-1 and IN-2. These findings suggest that the mechanism of antimicrobial action of IN-3 and IN-4 may be involved in the inhibition of intracellular functions via interference with DNA/RNA synthesis. Unlike IN, all IN analogs did not inhibit nitric oxide production or inducible nitric oxide synthase mRNA expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells, indicating that the hydrophobicity of IN is more important for anti-inflammatory activity in lipopolysaccharide-treated macrophage cells than the positive charge. 相似文献
8.
9.
10.
András Penyige János Matkó Eleonóra Deák Andrea Bodnár Gy?rgy Barabás 《Biochemical and biophysical research communications》2002,290(4):1169-1175
The effect of beta-lactam antibiotics that are known to inhibit cell wall biosynthesis and induce cell wall autolysis on the electrophysiological state of the plasma membrane in Streptomyces griseus was studied. Addition of various beta-lactam antibiotics induced a dose- and growth-stage-dependent depolarization of the membrane potential of Streptomyces griseus. The hydrolyzed biologically inactive derivative penicilloic acid had no depolarizing effect on the membrane potential. The ionophore gramicidin D, while depolarizing the membrane potential, also induced a dose-dependent increase in cell wall lysis. These observations suggest that alteration of the transmembrane potential could be an important signal in triggering cell wall autolysis of S. griseus. 相似文献
11.
12.
NSAIDs displayed chemopreventive and anticancer effects against several types of cancers. Moreover, combination of NSAIDs with anticancer agents resulted in enhanced anticancer activity. These findings have attracted much attention of researchers working in this field. The 2-arylpropionic acid-derived NSAIDs represent one of the most widely used anti-inflammatory agents. Additionally, they displayed antiproliferative activities against different types of cancer cells. Large volume of research was performed to identify molecular targets responsible for this activity. However, the exact mechanism underlying the anticancer activity of profens is still unclear. In this review article, the anticancer potential, structure activity relationship and synthesis of selected profen derivatives were summarized. This review is focused also on non-COX targets which can mediate the anticancer activity of this derivatives. The data in this review highlighted profens as promising lead compounds in future research to develop potent and safe anticancer agents. 相似文献
13.
Dongdong Wang Pavel Uhrin Andrei Mocan Birgit Waltenberger Johannes M. Breuss Devesh Tewari Judit Mihaly-Bison Łukasz Huminiecki Rafał R. Starzyński Nikolay T. Tzvetkov Jarosław Horbańczuk Atanas G. Atanasov 《Biotechnology advances》2018,36(6):1586-1607
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies. 相似文献
14.
Nonalcoholic fatty liver disease (NAFLD) has recently been recognized as an important etiology contributing to the increased incidence of hepatocellular carcinoma (HCC). NAFLD, characterized by fat accumulation in the liver, is affecting at least one-third of the global population. The more aggressive form, nonalcoholic steatohepatitis (NASH), is characterized by hepatocyte necrosis and inflammation. The development of effective approaches for disease prevention and/or treatment heavily relies on deep understanding of the mechanisms underlying NAFLD to HCC development. However, this has been largely hampered by the lack of robust experimental models that recapitulate the full disease spectrum. This review will comprehensively describe the current in vitro and mouse models for studying NAFLD/NASH/HCC, and further emphasize their applications and possible future improvement for better understanding the molecular mechanisms involved in the cascade of NAFLD to HCC progression. 相似文献
15.
16.
Our understanding of the evolution of the insulin signaling pathway (ISP) is still incomplete. One intriguing unanswered question is the explanation of the emergence of the glucostatic role of insulin in mammals. To find out whether this is due to the development of new sets of signaling transduction elements in these organisms, or to the establishment of new interactions between pre-existing proteins, we rebuilt putative orthologous ISPs in 17 eukaryotic organisms. Then, we computed the conservation of orthologous ISPs at different levels, from sequence similarity of orthologous proteins to co-evolution of interacting domains. We found that the emergence of glucostatic role in mammals can neither be explained by the development of new sets of signaling elements, nor by the establishment of new interactions between pre-existing proteins. The comparison of orthologous IRS molecules indicates that only in mammals have they acquired their complete functionality as efficient recruiters of effector sub-pathways. 相似文献
17.
18.