首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Grass water stress estimated from phytoliths in West Africa   总被引:2,自引:0,他引:2  
Aim This study calibrates the relationship between phytolith indices, modern vegetation structure, and a climate parameter (AET/PET, i.e. the ratio of annual actual evapotranspiration to annual potential evapotranspiration), in order to present new proxies for long‐term Quaternary climate and vegetation changes, and model/data comparisons. Location Sixty‐two modern soil surface samples from West Africa (Mauritania and Senegal), collected along a latitudinal transect across four bioclimatic zones, were analysed. Methods Two phytolith indices are defined as normalized data: (1) humidity‐aridity index [Iph (%) = saddle vs. cross + dumbbell + saddle], and (2) water stress index [fan‐shaped index (Fs) (%) = fan‐shaped vs. sum of characteristic phytoliths]. Vegetation structures are delimited according to Iph and Fs boundaries. Bootstrapped regression methods are used for evaluating the strength of the relationship between the two phytolith indices and AET/PET. Additional modern phytolith assemblages, from Mexico, Cameroon and Tanzania are extracted in order to test the calibration established from the West African samples. Accuracy of the AET/PET phytolith proxy is compared with equivalent pollen proxy from the same area. Results Characterization of the grass cover is accurately made through Iph. A boundary of 20 ± 1.4% discriminates tall grass savannas from short grass savannas. Water stress and transpiration experienced by the grass cover can be estimated through Fs. AET/PET is accurately estimated from phytoliths by a transfer function: AET/PET = ?0.605 Fs ? 0.387 Iph + 0.272 (Iph – 20)2 (r = 0.80 ± 0.04) in the application domain (AET/PET ranging from 0.1 ± 0.04 to 0.45 ± 0.04). Phytolith and pollen estimate with similar precision (rpollen = 0.84 ± 0.04) the AET/PET in the studied area. Conclusions This study demonstrates that we can rely on the phytolith indices Iph and Fs to distinguish the different grasslands in tropical areas. Moreover, a new phytolith proxy of AET/PET, linked to water availability, is presented. We suggest from these results that combining phytolith and pollen proxies of AET/PET would help to constrain this climate parameter better, especially when phytolith assemblages are dominated by Panicoideae and Chloridoideae C4‐grass phytoliths, are devoid of Pooideae C3‐grass phytoliths, and occur with a few tropical ligneous woody dicotyledon phytoliths. As AET/PET is a bioclimatic indicator commonly used in vegetation models, such a combination would help to make model/data comparisons more efficient.  相似文献   

2.
Pollen data from 18,000 14C yr bp were compiled in order to reconstruct biome distributions at the last glacial maximum in southern Europe and Africa. Biome reconstructions were made using the objective biomization method applied to pollen counts using a complete list of dryland taxa wherever possible. Consistent and major differences from present‐day biomes are shown. Forest and xerophytic woods/scrub were replaced by steppe, both in the Mediterranean region and in southern Africa, except in south‐western Cape Province where fynbos (xerophytic scrub) persisted. Sites in the tropical highlands, characterized today by evergreen forest, were dominated by steppe and/or xerophytic vegetation (cf. today’s Ericaceous belt and Afroalpine grassland) at the last glacial maximum. Available data from the tropical lowlands are sparse but suggest that the modern tropical rain forest was largely replaced by tropical seasonal forest while the modern seasonal or dry forests were encroached on by savanna or steppe. Montane forest elements descended to lower elevations than today.  相似文献   

3.
African herbaceous biomes will likely face drastic changes in the near future, due to climate change and pressures from increasing human activities. However, these biomes have been simulated only by dynamic global vegetation models and failing to include the diversity of C4 grasses has limited the accuracy of these models. Characterizing the floristic and physiognomic diversity of these herbaceous biomes would enhance the parameterization of C4 grass plant functional types, thereby improving simulations. To this end, we used lowermost and uppermost values of three grass physiognomic traits (culm height, leaf length, and leaf width) available in most floras to identify several grass physiognomic groups that form the grass cover in Senegal. We then checked the capacity of these groups to discriminate herbaceous biomes and mean annual precipitation domains. Specifically, we assessed whether these groups were sufficiently generic and robust to be applied to neighboring (Chad) and distant (South Africa) phytogeographic areas. The proportions of two physiognomic groups, defined by their lowermost limits, delineate steppe from savanna and forest biomes in Senegal, and nama‐karoo, savanna, and grassland biomes in South Africa. Proportions of these two physiognomic groups additionally delineate the mean annual precipitation domains <600 mm and >600 mm in Senegal, Chad, and South Africa, as well as the <250 mm and >1000 mm domains in South Africa. These findings should help to identify and parameterize new C4 grass plant functional types in vegetation models applied to West and South Africa.  相似文献   

4.
Aim Grasslands and savannas, which make up > 75% of Madagascar’s land area, have long been viewed as anthropogenically derived after people settled on the island c. 2 ka. We investigated this hypothesis and an alternative – that the grasslands are an insular example of the post‐Miocene spread of C4 grassy biomes world‐wide. Location Madagascar, southern Africa, East Africa. Methods We compared the number of C4 grass genera in Madagascar with that in southern and south‐central African floras. If the grasslands are recent we would expect to find fewer species and genera in Madagascar relative to Africa and for these species and genera to have very wide distribution ranges in Madagascar. Secondly, we searched Madagascan floras for the presence of endemic plant species or genera restricted to grasslands. We also searched for evidence of a grassland specialist fauna with species endemic to Madagascar. Plant and animal species endemic to C4 grassy biomes would not be expected if these are of recent origin. Results Madagascar has c. 88 C4 grass genera, including six endemic genera. Excluding African genera with only one or two species, Madagascar has 86.6% of southern Africa’s and 89.4% of south‐central Africa’s grass genera. C4 grass species make up c. 4% of the flora of both Madagascar and southern Africa and species : genus ratios are similar (4.3 and 5.1, respectively). Turnover of grasses along geographical gradients follows similar patterns to those in South Africa, with Andropogoneae dominating in mesic biomes and Chlorideae in semi‐arid grassy biomes. At least 16 monocot genera have grassland members, many of which are endemic to Madagascar. Woody species in frequently burnt savannas include both Madagascan endemics and African species. A different woody flora, mostly endemic, occurs in less frequently burnt grasslands in the central highlands, filling a similar successional niche to montane C4 grasslands in Africa. Diverse vertebrate and invertebrate lineages have grassland specialists, including many endemic to Madagascar (e.g. termites, ants, lizards, snakes, birds and mammals). Grassland use of the extinct fauna is poorly known but carbon isotope analysis indicates that a hippo, two giant tortoises and one extinct lemur ate C4 or CAM (crassulacean acid metabolism) plants. Main conclusions The diversity of C4 grass lineages in Madagascar relative to that in Africa, and the presence of plant and animal species endemic to Madagascan grassy biomes, does not fit the view that these grasslands are anthropogenically derived. We suggest that grasslands invaded Madagascar after the late Miocene, part of the world‐wide expansion of C4 grassy biomes. Madagascar provides an interesting test case for biogeographical analysis of how these novel biomes assembled, and the sources of the flora and fauna that now occupy them. A necessary part of such an analysis would be to establish the pre‐settlement extent of the C4 grassy biomes. Carbon isotope analysis of soil organic matter would be a feasible method for doing this.  相似文献   

5.
内蒙古典型草原禾本科植硅体形态   总被引:10,自引:2,他引:8  
运用地层中植硅体组合解释过去草原植被及气候变化的关键之一,是要了解研究区现代植硅体形态及表土植硅体组合与现代植被的关系。文中研究内蒙古典型草原禾本科植物根、茎、叶、芒以及种子等不同部位的植硅体,对其中的12种主要禾本科植物叶表皮短细胞硅酸体进行分类及统计。研究表明:内蒙古典型草原禾本科叶表皮短细胞硅酸体可分为8种特殊形态类型。C3植物早熟禾亚科的叶表皮短细胞硅酸体形态多样。几乎所有早熟禾亚科都能产生圆型硅酸体,以贝加尔针茅(85.5%)、大针茅(89.7%)、克氏针茅(90%)以及芨芨草(96.6%)中的圆型硅酸体含量最丰富。针茅哑铃型主要见于针茅植物叶表皮短细胞中,克氏针茅的针茅哑铃型含量相对较高。羊草中未见针茅哑铃型硅酸体。浴草、披缄草叶表皮短细胞硅酸体以齿型为主,分别含87.3%和57.2%,齿型在硬质早熟禾中也占一定比例。沙生冰草中的脊圆型占优势,含74.4%。C3植物早熟禾亚科的叶表皮短细胞产生的截锥型硅酸体含量较少。C4植物虎尾草亚科中的糙隐子草叶表皮短细胞硅酸体以黍哑铃型、简单哑铃型、鞍型为主;黍亚科狗尾草则以黍哑铃型占优势(82.9%)。  相似文献   

6.
A biomization method, which objectively assigns individual pollen assemblages to biomes ( Prentice et al., 1996 ), was tested using modern pollen data from Japan and applied to fossil pollen data to reconstruct palaeovegetation patterns 6000 and 18,000 14C yr bp Biomization started with the assignment of 135 pollen taxa to plant functional types (PFTs), and nine possible biomes were defined by specific combinations of PFTs. Biomes were correctly assigned to 54% of the 94 modern sites. Incorrect assignments occur near the altitudinal limits of individual biomes, where pollen transport from lower altitudes blurs the local pollen signals or continuous changes in species composition characterizes the range limits of biomes. As a result, the reconstructed changes in the altitudinal limits of biomes at 6000 and 18,000 14C yr bp are likely to be conservative estimates of the actual changes. The biome distribution at 6000 14C yr bp was rather similar to today, suggesting that changes in the bioclimate of Japan have been small since the mid‐Holocene. At 18,000 14C yr bp the Japanese lowlands were covered by taiga and cool mixed forests. The southward expansion of these forests and the absence of broadleaved evergreen/warm mixed forests reflect a pronounced year‐round cooling.  相似文献   

7.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

8.
9.
Palaeoecological reconstructions based on a single proxy are limited, but by combining pollen, biogeochemistry and grass cuticle analysis, ecosystem structure and function can be better understood. Lake Rutundu is a small, subalpine lake on the northeast flank of Mt Kenya. During the last glacial, pollen evidence suggests a shrub grassland dominated by Afroalpine taxa and Poaceae, representing a dry, cold, open environment. The δ13C values of terrestrial biomarkers imply a high proportion of C4 plants. Grass cuticle analysis allows resolution of the different C4 subtypes and shows that the vegetation was dominated by tall C4 panicoid grasses, prone to frequent fires. During the Holocene, Poaceae pollen declined while subalpine shrubs increased. The δ13C values of terrestrial biomarkers imply a C3-dominated vegetation. Together with an expansion of rainforest at lower altitudes, this suggests wetter conditions more favourable to C3 plants. Increased percentages of C3 pooid grass cuticles confirm a reduction in moisture stress.  相似文献   

10.
Fossil plants provide data on climate, community composition and structure, all of which are relevant to the definition and recognition of biomes. Macrofossils reflect local vegetation, whereas pollen assemblages sample a larger area. The earliest solid evidence for angiosperm tropical rainforest in Africa is based primarily on Late Eocene to Late Oligocene (ca. 39-26 Myr ago) pollen assemblages from Cameroon, which are rich in forest families. Plant macrofossil assemblages from elsewhere in interior Africa for this time interval are rare, but new work at Chilga in the northwestern Ethiopian Highlands documents forest communities at 28 Myr ago. Initial results indicate botanical affinities with lowland West African forest. The earliest known woodland community in tropical Africa is dated at 46 Myr ago in northern Tanzania, as documented by leaves and fruits from lake deposits. The community around the lake was dominated by caesalpinioid legumes, but included Acacia, for which this, to my knowledge, is the earliest record. This community is structurally similar to modern miombo, although it is different at the generic level. The grass-dominated savannah biome began to expand in the Middle Miocene (16 Myr ago), and became widespread in the Late Miocene (ca. 8 Myr ago), as documented by pollen and carbon isotopes from both West and East Africa.  相似文献   

11.
We present here the results of a first study comparing modern soil phytolith assemblages with pollen and botanical data at a North Mediterranean site. This work has shown the following limitations and advantages of phytolith analysis for the reconstruction of Mediterranean vegetation:(1) Phytoliths are produced in sufficient quantities for analysis and are well preserved in limestone environments, widespread in the Mediterranean area. (2) Young stands of Quercus ilex and Quercus coccifera, widely distributed in the Mediterranean area do not produce characteristic phytolith types in sufficient quantities to allow the calculation of a reliable index of tree cover density. (3) Pine forests, dominated by Pinus halepensis and Pinus sylvestris, are not recorded in the studied phytolith assemblages. (4) Grassland and shrubland assemblages can be distinguished through their associated phytolith assemblages, in particular by the proportion of crenate phytoliths produced in the short cells of the grass epidermis. (5) The different vegetation groups on the massif cannot be distinguished by pollen analysis. Further studies, comparing modern phytolith assemblages and quantitative vegetation data, should be carried out on forest plots that have been established for several centuries to further assess the role of phytolith analysis in vegetation reconstructions in the Mediterranean region.  相似文献   

12.
Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north‐eastern and south‐western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid‐Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.  相似文献   

13.
Atmospheric CO2 enrichment usually changes the relative contributions of plant species to biomass production of grasslands, but the types of species favored and mechanisms by which change is mediated differ among ecosystems. We measured changes in the contributions of C3 perennial forbs and C4 grasses to aboveground biomass production of tallgrass prairie assemblages grown along a field CO2 gradient (250–500 μmol mol?1) in central Texas USA. Vegetation was grown on three soil types and irrigated each season with water equivalent to the growing season mean of precipitation for the area. We predicted that CO2 enrichment would increase the forb contribution to community production, and favor tall‐grasses over mid‐grasses by increasing soil water content and reducing the frequency with which soil water fell below a limitation threshold. CO2 enrichment favored forbs over grasses on only one of three soil types, a Mollisol. The grass fraction of production increased dramatically across the CO2 gradient on all soils. Contribution of the tall‐grass Sorghastrum nutans to production increased at elevated CO2 on the two most coarse‐textured of the soils studied, a clay Mollisol and sandy Alfisol. The CO2‐caused increase in Sorghastrum was accompanied by an offsetting decline in production of the mid‐grass Bouteloua curtipendula. Increased CO2 favored the tall‐grass over mid‐grass by increasing soil water content and apparently intensifying competition for light or other resources (Mollisol) or reducing the frequency with which soil water dipped below threshold levels (Alfisol). An increase in CO2 of 250 μmol mol?1 above the pre‐industrial level thus led to a shift in the relative production of established species that is similar in magnitude to differences observed between mid‐grass and tallgrass prairies along a precipitation gradient in the central USA. By reducing water limitation to plants, atmospheric CO2 enrichment may alter the composition and even structure of grassland vegetation.  相似文献   

14.
Jian Ni 《Folia Geobotanica》2001,36(2):113-129
A biome classification for China was established based on plant functional types (PFTs) using the BIOME3 model to include 16 biomes. In the eastern part of China, the PFTs of trees determine mostly the physiognomy of landscape. Biomes range from boreal deciduous coniferous forest/woodland, boreal mixed forest/woodland, temperate mixed forest, temperate broad-leaved deciduous forest, warm-temperate broad-leaved evergreen/mixed forest, warm-temperate/cool-temperate evergreen coniferous forest, xeric woodland/scrub, to tropical seasonal and rain forest, and tropical deciduous forest from north to south. In the northern and western part of China, grass is the dominant PFT. From northeast to west and southwest the biomes range from moist savannas, tall grassland, short grassland, dry savannas, arid shrubland/steppe, desert, to alpine tundra/ice/polar desert. Comparisons between the classification introduced here and the four classifications which were established over the past two decades, i.e. the vegetation classification, the vegetation division, the physical ecoregion, and the initial biome classification have showed that the different aims of biome classifications have resulted in different biome schemes each with its own unique characteristics and disadvantages for global change study. The new biome classification relies not only on climatic variables, but also on soil factor, vegetation functional variables, ecophysiological parameters and competition among the PFTs. It is a comprehensive classification that using multivariables better expresses the vegetation distribution and can be compared with world biome classifications. It can be easily used in the response study of Chinese biomes to global change, regionally and globally.  相似文献   

15.
Fires burning the vast grasslands and savannas of Africa significantly influence the global carbon cycle. Projecting the impacts of future climate change on fire‐mediated biogeochemical processes in these dry tropical ecosystems requires understanding of how various climate factors influence regional fire regimes. To examine climate–vegetation–fire linkages in dry savanna, we conducted macroscopic and microscopic charcoal analysis on the sediments of the past 25 000 years from Lake Challa, a deep crater lake in equatorial East Africa. The charcoal‐inferred shifts in local and regional fire regimes were compared with previously published reconstructions of temperature, rainfall, seasonal drought severity, and vegetation dynamics to evaluate millennial‐scale drivers of fire occurrence. Our charcoal data indicate that fire in the dry lowland savanna of southeastern Kenya was not fuel‐limited during the Last Glacial Maximum (LGM) and Late Glacial, in contrast to many other regions throughout the world. Fire activity remained high at Lake Challa probably because the relatively high mean‐annual temperature (~22 °C) allowed productive C4 grasses with high water‐use efficiency to dominate the landscape. From the LGM through the middle Holocene, the relative importance of savanna burning in the region varied primarily in response to changes in rainfall and dry‐season length, which were controlled by orbital insolation forcing of tropical monsoon dynamics. The fuel limitation that characterizes the region's fire regime today appears to have begun around 5000–6000 years ago, when warmer interglacial conditions coincided with prolonged seasonal drought. Thus, insolation‐driven variation in the amount and seasonality of rainfall during the past 25 000 years altered the immediate controls on fire occurrence in the grass‐dominated savannas of eastern equatorial Africa. These results show that climatic impacts on dry‐savanna burning are heterogeneous through time, with important implications for efforts to anticipate future shifts in fire‐mediated ecosystem processes.  相似文献   

16.
Sensitivity of African biomes to changes in the precipitation regime   总被引:4,自引:0,他引:4  
Aim Africa is identified by the Inter‐governmental Panel on Climate Change (IPCC) as the least studied continent in terms of ecosystem dynamics and climate variability. The aim of this study was (1) to adapt the Lund‐Postdam‐Jena‐GUESS (LPJ‐GUESS) ecological modelling framework to Africa by providing new parameter values for tropical plant functional types (PFT), and (2) to assess the sensitivity of some African biomes to changes in precipitation regime. Location The study area was a representative transect (0–22° N and 7–18° E) through the transition from equatorial evergreen forests to savannas, steppes and desert northwards. The transect showed large latitudinal variation in precipitation (mean rainfall ranged from 50 to 2300 mm year?1). Methods New PFT parameters used to calibrate LPJ‐GUESS were based on modern pollen PFTs and remote sensed leaf area index (LAI). The model was validated using independent modern pollen assemblages, LAI and through comparison with White's modern potential vegetation map. Several scenarios were developed by combining changes in total rainfall amount with variation in the length of the dry season in order to test the sensitivity of African biomes. Results Simulated vegetation compared well to observed data at local and regional scales, in terms of ecosystem functioning (LAI), and composition (pollen and White's vegetation map). The assessment of the sensitivity of biomes to changes in precipitation showed that none of the ecosystems would shift towards a new type under the range of precipitation increases suggested by the IPCC (increases from 5 to 20%). However, deciduous and semi‐deciduous forests may be very sensitive to small reductions in both the amount and seasonality of precipitation. Main conclusions This version of LPJ‐GUESS parameterized for Africa simulated correctly the vegetation present over a wide precipitation gradient. The biome sensitivity assessment showed that, compared with savannas and grasslands, closed canopy forests may be more sensitive to change in precipitation regime due to the synergetic effects of changed rainfall amounts and seasonality on vegetation functioning.  相似文献   

17.
陈瑜  倪健 《植物生态学报》2008,32(5):1201-1212
 古植被定量重建是过去全球变化研究的重点之一, 生物群区化(Biomisation)方法以特征植物功能型来定义生物群区, 通过一种标准化数量方法计算孢粉谱的相似得分, 以此把孢粉谱转变为生物群区类型, 是进行古植被定量重建的一种有效方法。该文在前人综述文章的基础上, 简述了生物群区化方法定量重建古植被格局的发展历史、具体步骤及存在问题, 重点描述了以此方法为基础重建的全新世中期(MH)和末次盛冰期(LGM)的全球古植被分布格局, 以及中国的古植被定量重建工作和古植被格局变化。目前的研究表明, 全新世中期北极森林界线在某些地区有轻微的北移迹象, 北部的温带森林带通常向北远距离迁移, 欧洲的温带落叶林也大范围向地中海地区(向南)和向北扩展, 在北美内陆, 草原侵入到森林生物群区, 但中亚地区却没有此现象, 中国大陆的森林生物群区扩张, 典型撒哈尔植被(如干草原、干旱疏林灌丛和热带干旱森林)进入撒哈拉地区, 而非洲热带雨林却呈减少趋势; 末次盛冰期苔原和草原扩张, 在欧亚大陆北部逐渐混合, 北半球的森林生物群区向南迁移, 北方常绿森林(泰加林)和温带落叶林呈碎片状, 而欧洲和东亚的草原却大范围扩张, 非洲的热带湿润森林(比如热带雨林和热带季雨林)有所减少, 在北美洲的西南地区, 荒漠和草原被开阔针叶疏林所取代。  相似文献   

18.
Aim The spatio‐temporal dynamics of dry evergreen forest patches in the savanna biome of the Kagera region (north‐western Tanzania) are largely unknown owing to a lack of pollen and macrofossil evidence. Our aims were to reconstruct local‐scale shifts of the forest–savanna boundary in order to determine whether the forests have been expanding or retreating on a centennial and millennial time‐scale. Location The Kagera region of north‐western Tanzania, East Africa. Methods The vegetation reconstruction was based on analysing δ13C signatures in soils along a transect spanning both C4 open savanna and C3 forest vegetation. Furthermore, we fractionated soil organic matter (SOM) according to density and chemical stability to analyse δ13C values of soil fractions with distinct radiocarbon ages. Results We found sharp changes in δ13C signatures in bulk SOM from the forest to the savanna, within a few metres along the transect. The forest soil profiles carried a persistent C3‐dominated signature. Radiocarbon dating of the oldest, most recalcitrant forest soil fraction yielded a mean age of 5500 cal. yr bp , demonstrating that the forest has existed since at least the mid‐Holocene. The savanna sites showed a typical C4 isotopic signature in SOM of topsoils, but subsoils and more recalcitrant SOM fractions also contained signals of C3 plants. The dense soil fraction (ρ > 1.6 g cm?3) carrying a pure C4 label had a mean age of c. 1200 cal. yr bp , indicating the minimum duration of the dominance of grass vegetation on the savanna site. At the forest edge, the older C4 grass signature of SOM has steadily been replaced by the more negative δ13C fingerprint of the forest trees. As this replacement has occurred mainly in the 10‐m‐wide forest–savanna ecotone over the last c. 1200 years, the forest expansion must be very slow and is very likely less than 15 m century?1. Main conclusions Our results suggest that forest patches in the Kagera savanna landscape are very stable vegetation formations which have persisted for millennia. During the last millennium, they have been expanding very slowly into the surrounding savanna at a rate of less than 15 m century?1.  相似文献   

19.
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2‐year experiment in three US Great Plains grasslands – the C4‐dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3‐dominated northern mixed grass prairie (NMP; intermediate ANPP) – to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high‐rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11–13) small or (ii) fewer (3–5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3‐dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above‐ and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.  相似文献   

20.
Abstract. The central grassland region of North America is characterized by large gradients of temperature and precipitation. These climatic variables are important determinants of the distribution of plant species, and strongly influence plant morphology and tissue chemistry. We analysed regional patterns of plant litter quality as they vary with climate in grassland ecosystems throughout central North America including tall‐grass prairie, mixed grass prairie, shortgrass steppe, and hot desert grasslands. An extensive database from the International Biological Program and the Long‐Term Ecological Research Program allowed us to isolate the effects of climate from those of plant functional types on litter quality. Our analysis of grass species confirms a previously recognized positive correlation between C/N ratios and precipitation. Precipitation exhibited a similar positive relationship with lignin/N and percent lignin. Although there was no significant correlation between temperature and C/N, there was a significant positive relationship between temperature and both percent lignin and lignin/N. Among functional types, C3 grasses had a slightly lower C/N ratio than C4 grasses. Tall grass species exhibited higher C/N, lignin/N, and percent lignin than short grass species. This understanding of the regional patterns of litter quality and the factors controlling them provides us with a greater knowledge of the effect that global change and the accompanying feedbacks may have on ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号