首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to optimize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLNs) which were used as topical eye drops by evaluating the relationship between design factors and experimental data. A three factor, three-level Box–Behnken design (BBD) was used for the optimization procedure, choosing the amount of GMS, the amount of phospholipid, the concentration of surfactant as the independent variables. The chosen dependent variables were entrapment efficiency, dosage loading, and particle size. The generated polynomial equations and response surface plots were used to relate the dependent and independent variables. The optimal nanoparticles were formulated with 100?mg GMS, 150?mg phospholipid, and 1% Tween80 and PEG 400 (1:1, w/v). A new formulation was prepared according to these levels. The observed responses were close to the predicted values of the optimized formulation. The particle size was 197.8?±?4.9?nm. The polydispersity index of particle size was 0.239?±?0.01 and the zeta potential was 32.7?±?2.6?mV. The entrapment efficiency and dosage loading were about 68.39% and 2.49%, respectively. Fourier transform infrared spectroscopy (FT-IR) study indicated that the drug was entrapped in nanoparticles. The optimized formulation showed a sustained release followed the Peppas model. MTZ-SLNs showed significant prolonged decreasing intraocular pressure effect comparing with MTZ solution in vivo pharmacodynamics studies. The results of acute eye irritation study indicated that MTZ-SLNs and AZOPT both had no eye irritation. Furthermore, the MTZ-SLNs were suitable to be stored at low temperature (4?°C).  相似文献   

2.
Solid lipid nanoparticles (SLNs) of duloxetine hydrochloride (DLX) were prepared to circumvent the problems of DLX, which include acid labile nature, high first-pass metabolism, and high-dosing frequency. The DLX-SLNs were prepared by using two different techniques, viz. solvent diffusion method and ultrasound dispersion method, and evaluated for particle size, zeta potential, entrapment efficiency, physical characteristics, and chemical stability. Best results were obtained when SLNs were prepared by ultrasound dispersion method using glyceryl mono stearate as solid lipid and DLX in ratio of 1:20 and mixture of polysorbate 80 and poloxamer 188 as surfactant in concentration of 3%. The mean particle size of formulation and entrapment efficiency was 91.7 nm and 87%, respectively, and had excellent stability in acidic medium. Differential scanning calorimetry and X-ray diffraction data showed complete amorphization of DLX in lipid. In vitro drug release from SLNs was observed for 48 h and was in accordance with Higuchi kinetics. In vivo antidepressant activity was evaluated in mice by forced swim test. DLX-SLNs showed significant enhancement in antidepressant activity at 24 h when administered orally in comparison to drug solution. These results confirm the potential of SLNs in enhancing chemical stability and improving the efficacy of DLX via oral route. The SLN dispersion was converted into solid granules by adsorbing on colloidal silicon dioxide and characterized for particle size after redispersion, morphology, and flow properties. Results indicated that nanoparticles were successfully adsorbed on the carrier and released SLNs when dispersed in water.  相似文献   

3.
Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ~170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.  相似文献   

4.
The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.KEY WORDS: atomic force microscopy, calorimetry (DSC), FTIR, particle size, solid lipid nanoparticles  相似文献   

5.
Li S  Ji Z  Zou M  Nie X  Shi Y  Cheng G 《AAPS PharmSciTech》2011,12(3):1011-1018
Tetrandrine (TET) is a poorly water-soluble bisbenzylisoquinoline alkaloid. In this study, TET solid lipid nanoparticles (SLNs) were prepared by a melt–emulsification and ultrasonication technique. Precirol® ATO 5, glyceryl monostearate, and stearic acid were used as the lipid matrix for the SLNs, while Lipoid E80, Pluronic F68, and sodium deoxycholate were used as emulsifying and stabilizing agents. The physicochemical characteristics of the TET–SLNs were investigated when it was found that the mean particle size and zeta potential of the TET–SLNs were 134 ± 1.3 nm and −53.8 ± 1.7 mV, respectively, and the entrapment efficiency (EE) was 89.57% ± 0.39%. Differential scanning calorimetry indicated that TET was in an amorphous state in SLNs. TET–SLNs exhibited a higher release rate at a lower pH and a lower release rate at a higher pH. The release pattern of the TET–SLNs followed the Weibull model. The pharmacokinetics of TET–SLNs after intravenous administration to male rats was studied. TET–SLN resulted in a higher plasma concentration and lower clearance. The biodistribution study indicated that TET–SLN showed a high uptake in reticuloendothelial system organs. In conclusion, TET–SLNs with a small particle size, and high EE, can be produced by the method described in this study. The SLN system is a promising approach for the intravenous delivery of tetrandrine.Key words: characterization, pharmacokinetics, preparation, solid lipid nanoparticles, tetrandrine  相似文献   

6.
Pentoxifylline (PTX) is a highly water-soluble, hemorheologic drug that undergoes first-pass effect with 20% bioavailability. The solid lipid nanoparticles (SLNs) of PTX were prepared to enhance its oral bioavailability by homogenization, followed by the sonification method. Seven different variables, each at two levels, were studied: lipid type, surfactant type and concentration, speed of homogenizer, acetone:dichloromethane (DCM) ratio, lecithin:lipid ratio, and sonication time. The mean particle size and size distribution, drug entrapment efficiency (EE%), zeta potential, and drug release of the SLNs were investigated. A pharmacokinetic study was conducted in male Wistar rats after oral administration of 10?mg kg?1 PTX in the form of free drug or SLNs. The z-average particle size, zeta potential, and EE% of the SLNs were at least 250?nm, ?30.2 mV, and 70%, respectively. Among the studied factors, the lipid type, surfactant type, and percentage had a significant effect on the particle size. Zeta potential was more affected by lipid type, acetone:DCM ratio, and sonication time. Speed of homogenizer and acetone:DCM ratio had a significant effect on the EE%. The optimized SLN was prepared by 80?mg of cetyl alcohol, 10?mg of lecithin, acetone:DCM ratio (1:2), 30-second sonication, 3% Tween 20, and a mixing rate of 800?rpm. In vitro drug release lasted for about 5 hours. It was found that the relative bioavailability of PTX in SLNs was significantly increased, compared to that of the PTX solution. SLNs offer a promising approach to improve the oral bioavailability of PTX that is affected by a high first-pass effect.  相似文献   

7.
The development of drug dispersions using solid lipids is a novel formulation strategy that can help address the challenges of poor drug solubility and systemic exposure after oral administration. The highly lipophilic and poorly water-soluble drug torcetrapib could be effectively formulated into solid lipid microparticles (SLMs) using an anti-solvent precipitation strategy. Acoustic milling was subsequently used to obtain solid lipid nanoparticles (SLNs). Torcetrapib was successfully incorporated into the lipid matrix in an amorphous state. Spherical SLMs with mean particle size of approximately 15–18 μm were produced with high drug encapsulation efficiency (>96%) while SLNs were produced with a mean particle size of 155 nm and excellent colloidal stability. The in vitro drug release and the in vivo absorption of the solid lipid micro- and nanoparticles after oral dosing in rats were evaluated against conventional crystalline drug powders as well as a spray dried amorphous polymer dispersion formulation. Interestingly, the in vitro drug release rate from the lipid particles could be tuned for immediate or extended release by controlling either the particle size or the precipitation temperature used when forming the drug-lipid particles. This change in the rate of drug release was manifested in vivo with changes in Tmax as well. In addition, in vivo pharmacokinetic studies revealed a significant increase (∼6 to 11-fold) in oral bioavailability in rats dosed with the SLMs and SLNs compared to conventional drug powders. Importantly, this formulation approach can be performed rapidly on a small scale, making it ideal as a formulation technology for use early in the drug discovery timeframe.Electronic supplementary materialThe online version of this article (doi:10.1208/s12249-015-0299-8) contains supplementary material, which is available to authorized users.KEY WORDS: anti-solvent precipitation, controlled release, formulation, nanoparticles, solid lipid  相似文献   

8.
Context: Avanafil (AVA) is used in the treatment of erectile dysfunction, but is reported for its poor aqueous solubility. Solid lipid nanoparticles (SLNs) are lipid carriers that can greatly enhance drug solubility and bioavailability.

Objective: This work was aimed to formulate and optimize AVA SLNs with subsequent loading into hydrogel films for AVA transdermal delivery.

Materials and methods: AVA SLNs were prepared utilizing homogenization followed by ultra-sonication technique. The prepared SLNs were characterized for particle size, charge, surface morphology and drug content. The optimized SLNs formulation was incorporated into transdermal films prepared using HPMC and chitosan. Hydrogel films were evaluated for ex-vivo rat skin permeation using automated Franz diffusion cells. The permeation parameters and the release mechanism were evaluated. The transdermal permeation of the prepared AVA SLNs through the skin layers was studied using confocal laser scanning microscope.

Results: Lipid concentration and % of oil in lipid had a pronounced effect on particle size while, entrapment efficiency was significantly affected by lipid concentration and % of cholesterol. The optimized AVA SLNs showed particle size and entrapment efficiency of 86?nm and 85.01%, respectively. TEM images revealed spherecity of the particles. High permeation parameters were observed from HPMC films loaded with AVA SLNs. The release data were in favor of Higuchi diffusion model. The prepared AVA SLNs were able to penetrate deeper in skin layers.

Conclusion: HPMC transdermal film-loaded AVA SLNs is an effective and alternative to per-oral drug administration.  相似文献   

9.
The aim of this work was to produce and characterize solid lipid nanoparticles (SLN) containing levothyroxine sodium for oral administration, and to evaluate the kinetic release of these colloidal carriers. SLNs were prepared by microemulsion method. The particle size and zeta potential of levothyroxine sodium-loaded SLNs were determined to be around 153 nm,?43 mV (negatively charged), respectively by photon correlation spectroscopy. The levothyroxine entrapment efficiency was over 98 %. Shape and surface morphology were determined by TEM and SEM. They revealed fairly spherical shape of nanoparticles.SLN formulation was stable over a period of 6 months. There were no significant changes in particle size, zeta potential and polydispersity index and entrapment efficiency, indicating that the developed SLNs were fairly stable.  相似文献   

10.
The purpose of this research was to study the effect of the lipid matrix on the entrapment of olanzapine (OL). OL-loaded solid lipid nanoparticles (SLNs) were prepared using lipids like glyceryl monostearate (GMS), Precirol ATO 5 (PRE), glyceryl tristearate (GTS), and Witepsol E85 (WE 85)--and poloxamer 407 and hydrogenated soya phosphatidylcholine as stabilizers--using a hot melt emulsification high-pressure homogenization technique, and then characterized by particle size analysis, zeta potential, differential scanning calorimetry (DSC), and powder X-ray diffraction (pXRD). Homogenization at 10,000 psi for 3 cycles resulted in the formation of SLNs with a mean particle size of approximately 190 nm for the 4 lipids investigated. The highest partition coefficient for OL between the melted lipid and pH 7.4 phosphate buffer (pH 7.4 PB) was obtained with GTS. The entrapment efficiency was in the following order: GTS SLNs > PRE SLNs > WE 85 SLNs > GMS SLNs. DSC and pXRD showed that much of the incorporated fraction of OL existed in the amorphous state after incorporation into SLNs. A sharp increase in the flocculation of the SLN dispersions was observed upon addition of 0.6 M aqueous sodium sulfate solution. Nanoparticle surface hydrophobicity was in the following order: GTS SLNs > PRE SLNs > WE 85 SLNs > GMS SLNs. A significant increase in size and zeta potential was observed for GTS SLN and WE 85 SLN dispersions stored at 40 degrees C. Release of OL from the SLNs was sustained up to 48 hours in pH 7.4 PB and obeyed Higuchi's release kinetics.  相似文献   

11.
Lipid nanoparticles based on solid matrix have emerged as potential drug carriers to improve gastrointestinal (GI) absorption and oral bioavailability of several drugs, especially lipophilic compounds. These formulations may also be used for sustained drug release. Solid lipid nanoparticle (SLN) and the newer generation lipid nanoparticle, nanostructured lipid carrier (NLC), have been studied for their capability as oral drug carriers. Biodegradable, biocompatible, and physiological lipids are generally used to prepare these nanoparticles. Hence, toxicity problems related with the polymeric nanoparticles can be minimized. Furthermore, stability of the formulations might increase than other liquid nano-carriers due to the solid matrix of these lipid nanoparticles. These nanoparticles can be produced by different formulation techniques. Scaling up of the production process from lab scale to industrial scale can be easily achieved. Reasonably high drug encapsulation efficiency of the nanoparticles was documented. Oral absorption and bioavailability of several drugs were improved after oral administration of the drug-loaded SLNs or NLCs. In this review, pros and cons, different formulation and characterization techniques, drug incorporation models, GI absorption and oral bioavailability enhancement mechanisms, stability and storage condition of the formulations, and recent advances in oral delivery of the lipid nanoparticles based on solid matrix will be discussed.  相似文献   

12.
In this study, solid lipid nanoparticles (SLNs) were successfully prepared by an ultrasonic and high-pressure homogenization method to improve the oral bioavailability of the poorly water-soluble drug cryptotanshinone (CTS). The particle size and distribution, drug loading capacity, drug entrapment efficiency, zeta potential, and long-term physical stability of the SLNs were characterized in detail. A pharmacokinetic study was conducted in rats after oral administration of CTS in different SLNs, and it was found that the relative bioavailability of CTS in the SLNs was significantly increased compared with that of a CTS-suspension. The incorporation of CTS in SLNs also markedly changes the metabolism behavior of CTS to tanshinone IIA. These results indicate that CTS absorption is enhanced significantly by employing SLN formulations, and SLNs represent a powerful approach for improving the oral absorption of poorly soluble drugs.  相似文献   

13.
The current research work investigates the potential of solid lipid nanoparticles (SLNs) in improving the oral bioavailability of paclitaxel. Paclitaxel-loaded SLNs (PTX-SLNs) were prepared by modified solvent injection method using stearylamine as lipid, soya lecithin and poloxamer 188 as emulsifiers. SLNs were characterized in terms of surface morphology, size and size distribution, surface chemistry and encapsulation efficiency. Pharmacokinetics and bioavailability studies were conducted in male Swiss albino mice after oral administration of PTX-SLNs. SLNs exhibited spherical shape with smooth surface as analyzed by transmission electron microscopy (TEM). The mean particle size of SLNs was 96 ± 4.4 nm with a low polydispersity index of 0.162 ± 0.04 and zeta potential of 39.1 ± 0.8 mV. The drug entrapment efficiency was found to be 75.42 ± 1.5% with a loading capacity of 31.5 ± 2.1% (w/w). Paclitaxel showed a slow and sustained in vitro release profile and followed Higuchi kinetic equations. After oral administration of the PTX-SLNs, drug exposure in plasma and tissues was ten- and twofold higher, respectively, when compared with free paclitaxel solution. PTX-SLNs produced a high mean C max (10,274 ng/ml) compared with that of free paclitaxel solution (3,087 ng/ml). The absorbed drug was found to be distributed in liver, lungs, kidneys, spleen, and brain. The results suggested that PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of paclitaxel as observed by in vivo toxicity studies.  相似文献   

14.
Paromomycin has been shown to have anti-leishmaniasis activity; however, its clinical use is restricted to some content owing to its poor skin penetration. To identify innovative methods of dermal administration of paromomycin and controlling the release delivery system, paromomycin was loaded into the solid lipid media as nanoparticles. Type of the method; microemulsion or solvent diffusion, the type of lipid; cetyl palmitate or stearic acid, were comparatively investigated on the average diameter, size distribution and entrapment efficiency of the lipid nanoparticles to maximize entrapment efficiency, reduce the particle size and its distribution. Three quantitative factors, paromomycin content, weight fraction of Tween 80 and drug to lipid ratio, were also investigated at two levels for Solid Lipid Nanoparticles (SLNs) formulation in a fractional factorial design. The results indicated that microemulsion was the most efficient method and stearic acid was the preferred lipid for SLNs formulation. The average size of the particles was reduced to 299.08 nm and the entrapment efficiency was enhanced from immediate release to 24 h.  相似文献   

15.
Solid lipid nanoparticles (SLNs) of buspirone HCl as a water-soluble drug were prepared by emulsification-evaporation, followed by the sonification method. A preliminary screening of the most effective parameters on the production of nanoparticles by a Taguchi L8 orthogonal array showed that the lipid type, surfactant percentage, speed of homogenizer, and acetone:dichloromethane (DCM) ratio had a significant effect on particle size. In the next step, the lipid was fixed on cetyl alcohol, surfactant on Tween 20, lecithin:lipid weight ratio on 20:70, sonication time on 30 seconds, and the other effective, independent factors aforementioned were studied each at three levels by a three-factor, three-level Box-Behnken design. The percentage of drug entrapment, mean particle-size diameter, and zeta potential were studied as the responses. Contour plots were constructed to further elucidate the relationship between the independent and dependent variables. A pharmacokinetic study was conducted in male Wistar rats after oral administration of 15?mg.kg?1 buspirone in the form of free drug or SLNs. The optimized SLNs had aq particle size of 345.7?nm, loading efficiency of 32.8%, and zeta potential of ?6.8?mV. Buspirone released about 90% during 4.5?hours in vitro. It was found that the relative bioavailability of the drug in SLNs was significantly increased, compared to that of the drug solution.  相似文献   

16.
BackgroundIn this study, the transport mechanism of fluorescently labeled hydroxypropyl beta-cyclodextrin (HPβ-CD) modified SLNs loaded with Amphotericin B (AmB) and Paromomycin (PM) have been investigated by using in vitro human epithelial cell model of a human colonic adenocarcinoma cell line (Caco-2).MethodsFabrication of HPβ-CD modified fluorescently labeled AmB and PM-loaded SLNs (HP?-CD-FITC-DDSLNs) was performed by using the emulsion solvent evaporation method. Caco-2 cells were used to investigate different endocytosis and exocytosis pathways to be followed by the nanoparticles. Intracellular co-localization of nanoformulation with different organelles was investigated.ResultsThe toxicity studies have shown the biocompatible nature of the modified lipid nanoparticles. The average particle size and PDI of HP?-CD-FITC-DDSLNs were found to be 187 ± 2.3 nm and 0.31 respectively. The most prevalent endocytosis mechanisms were shown to be macropinocytosis and caveolae (lipid raft) dependent pathways. The Golgi complex and endoplasmic reticulum are the confirmed destinations of HP?-CD-FITC-DDSLNs in the Caco-2 cell monolayer, even though lysosomes have been shown to escape and play a minimal role during nanoparticle transport.ConclusionHP?-CD-DDSLNs were found to be biocompatible and safe for delivering hydrophobic as well as hydrophilic drugs through an oral route to target the RES system for the treatment of visceral leishmania.General significanceUnderstanding the process underlying the transport of modified solid lipid nanoparticles for oral drug delivery could be useful for many medicines with low solubility, permeability, and stability.  相似文献   

17.
The miscibility of triolein and cholesteryl oleate with 1-palmitoyl-2-oleoyl phosphatidylcholine was studied at the argon-buffer interface. The surface phase behavior of the system was analogous to that for cholesteryl ester-phospholipid mixtures in that both monolayer and double layer surface phases were formed. By considering the bulk properties of cholesteryl oleatetriolein mixtures and the two-dimensional phase rule, the entire system could be described. Double layer properties suggest that it consists of mostly triolein and phospholipid in the layer adjacent to the aqueous phase. The monolayer phase shows the formation of complexes between the neutral lipids and the phospholipid with stoichiometries nearly identical with those reported for bilayers (Hamilton, J. A., Miller, K. W., and Small, D. M. (1983) J. Biol. Chem. 258, 12821-12826). A second complex with a 3:1 stoichiometry is formed between triolein and cholesteryl oleate independently of interactions with phospholipid. Upon interaction with phospholipid, the triolein-cholesteryl oleate complex loses proportionately more area than either lipid alone. Because the area of complexes with phospholipid is constant, overall neutral lipid miscibility in such complexes is enhanced by the cholesteryl oleate-triolein interaction. Thus, our data explain the apparently nonideal mixing of cholesteryl oleate, triolein, and phospholipid in monolayers and in bilayers.  相似文献   

18.
Nanoparticle-based delivery vehicles have shown great promise for intracellular targeting applications, providing a mechanism to specifically alter cellular signaling and gene expression. In a previous investigation, the synthesis of ultra-small solid lipid nanoparticles (SLNs) for topical drug delivery and biomarker detection applications was demonstrated. SLNs are a well-studied example of a nanoparticle delivery system that has emerged as a promising drug delivery vehicle. In this study, SLNs were loaded with a fluorescent dye and used as a model to investigate particle-cell interactions. The phase inversion temperature (PIT) method was used for the synthesis of ultra-small populations of biocompatible nanoparticles. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylphenyltetrazolium bromide (MTT) assay was utilized in order to establish appropriate dosing levels prior to the nanoparticle-cell interaction studies. Furthermore, primary human dermal fibroblasts and mouse dendritic cells were exposed to dye-loaded SLN over time and the interactions with respect to toxicity and particle uptake were characterized using fluorescence microscopy and flow cytometry. This study demonstrated that ultra-small SLNs, as a nanoparticle delivery system, are suitable for intracellular targeting of different cell types.  相似文献   

19.
Nanoemulsions (NEs) and solid lipid nanoparticles (SLNs) are widely used colloidal carriers for bioactive compounds. They are used in therapeutic, diagnostic, and cosmetic formulations. Ceramides are main components of the stratum corneum and are essential for the efficient barrier function. Their very high lipophilicity renders them difficult to incorporate in an acceptable formulation. The aim of this work was to investigate the possibility of using the benefits of nanotechnology in the efficient topical delivery of ceramides formulated as NEs or SLNs. The physicochemical characteristics of such carriers incorporating ceramides were investigated and their stability over time was assessed. Their morphology was examined under a scanning electron microscope and the interactions of their components were studied by differential scanning calorimetry. The results showed that the nanoemulsions can incorporate a high percentage (48.4% of total lipids by weight) of ceramides giving more homogeneous particle distributions of spherical-shaped nanoparticles and they maintained their characteristics over time. On the contrary, SLNs’ incorporation of ceramide higher than 10.8% of total lipids by weight led to the formation of rod-like nanoparticles deteriorating the homogeneity of the particle distribution, as depicted on the high polydispersity indexes of the corresponding formulations. The results demonstrate that NEs may be the more suitable carrier, compared to SLNs.  相似文献   

20.
A novel drug delivery system consisting of benzoic acid, 2-hydroxy-, 2-d-ribofuranosylhydrazide (BHR)-loaded solid lipid nanoparticles (BHR-SLNs) was prepared using the emulsification–evaporation technique. The mean particle size of the BHR-SLNs measured by photon correlation spectroscopy was about 75 nm. BHR-SLN morphology was assessed by transmission electron microscopy and atomic force microscopy. The drug entrapment efficiency was 70.2%, as determined via Sephadex gel chromatography and high-performance liquid chromatography. Drug release assessment in vitro showed that BHR was gradually released from SLNs in a time-dependent manner. Furthermore, treatment of 293T and Hela cells with BHR-SLNs demonstrated that BHR-SLNs were less toxic to normal cells while more effective in antitumor potency compared with the BHR drug alone. The results imply that BHR-SLNs could be considered as a promising antitumor drug system for a range of new therapeutic applications.KEY WORDS: benzoic acid, 2-hydroxy-, 2-d-ribofuranosylhydrazide (BHR); controlled release; drug delivery; solid lipid nanoparticles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号