首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new dual fluorescence technique is described which, when combined with scanning confocal laser microscopy (SCLM), can be used to visualize the components of biofilm produced byStaphylococcus epidermidis. Chemostat cultures of RP62A (a well-characterized slime-producing strain ofS. epidermidis) were used to produce mature biofilm on polyvinylcholoride (PVC) disks immobilized in a modified Robbins device using a seed and feed model system. Serial horizontal and vertical optical thin sections, as well as three-dimensional computer reconstructions, were obtained onin situ biofilm using the dual fluorescence procedure. Bacteria were visualized by green autofluorescence excited at 488 nm with an Argon laser. Cell-associated and exocellular matrix material (slime) was visualized by red fluorescence excited at 568 nm with a Krypton laser after interaction of the biofilm with Texas Red-labeled wheat germ agglutinin which is a slime-specific lectin marker. Structural analysis revealed that the cocci grew in slime-embedded cell clusters forming distinct conical-shaped microcolonies. Interspersed open channels served to connect the bulk liquid with the deepest layers of the mature, hydrated biofilm which increased overall surface area and likely facilitated the exchange of nutrients and waste products throughout the biofilm. The combined dual fluorescence technique and SCLM is potentially useful as a specific noninvasive tool for studying the effect of antimicrobial agents on the process of biofilm formation and for the characterization of the architecture ofS. epidermidis biofilm formedin vivo andin vitro on medical grade virgin or modified inert polymer surfaces.  相似文献   

2.
3.
Wilts, E.F., Wulfken, D., Ahlrichs, W.H. and Martínez Arbizu, P. 2012. The musculature of Squatinella rostrum (Milne, 1886) (Rotifera: Lepadellidae) as revealed by confocal laser scanning microscopy with additional new data on its trophi and overall morphology.—Acta Zoologica (Stockholm) 93 : 14–27. The monogonont rotifer Squatinella rostrum was investigated with light, scanning electron and confocal laser scanning microscopy to reveal new morphological data on its inner and outer anatomy. In total, the visualized somatic musculature displays five paired longitudinal muscles (musculi longitudinales I–V) and nine circular muscles (musculi circulares I–IX). Compared to other species, S. rostrum is characterized by the absence of several longitudinal and circular muscles (e.g. musculus longitudinalis capitis, corona sphincter and pars coronalis). A reconstruction of the mastax musculature revealed a total number of seven paired and two unpaired mastax muscles. Possibly homologous somatic and mastax muscles in other, thus far investigated rotifers are discussed. Moreover, we provide a phylogenetic evaluation of the revealed morphological characters and suggest possible autapomorphic characters supporting Squatinella and Lepadellidae. Finally, we refer to some striking similarities in the morphology, ecology and way of movement of Squatinella and Bryceella that may indicate a closer relationship of both taxa.  相似文献   

4.
5.
The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid–base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na+]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na+]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye–ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na+]i, whereas no significant differences in branchial [Na+]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na+]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms.  相似文献   

6.
Choi J  Choo J  Chung H  Gweon DG  Park J  Kim HJ  Park S  Oh CH 《Biopolymers》2005,77(5):264-272
Raman spectroscopy has strong potential for providing noninvasive dermatological diagnosis of skin cancer. In this study, confocal Raman microscopy was applied to the dermatological diagnosis for one of the most common skin cancers, basal cell carcinoma (BCC). BCC tissues were obtained from 10 BCC patients using a routine biopsy and used for confocal Raman measurements. Autofluorescence signals from tissues, which interfere with the Raman signals, were greatly reduced using a confocal slit adjustment. Distinct Raman band differences between normal and BCC tissues for the amide I mode and the PO2- symmetric stretching mode showed that this technique has strong potential for use as a dermatological diagnostic tool without the need for statistical treatment of spectral data. It was also possible to precisely differentiate BCC tissue from surrounding noncancerous tissue using the confocal Raman depth profiling technique. We propose that confocal Raman microscopy provides a novel method for dermatological diagnosis since direct observations of spectral differences between normal and BCC tissues are possible.  相似文献   

7.
BACKGROUND AND AIMS: The phylogenetic affinities of the aberrant monotypic genus Duparquetia (subfamily Caesalpinioideae) are at present unresolved. Preliminary results from molecular analyses suggest a basal, isolated position among legumes. A study of Duparquetia pollen was carried out to provide further morphological characters to contribute to multi-data set analyses. Understanding the development of Duparquetia pollen was necessary to clarify the orientation of the apertures. METHODS: Pollen grains and developing microspores were examined using light microscopy, confocal microscopy and scanning electron microscopy. Evidence for the orientation of the apertures was provided by the examination of microspores within developing tetrads, using (a) confocal microscopy to locate the position of the ectoapertures, and (b) light microscopy and Alcian blue stain to locate the position of the endoapertures. KEY RESULTS: Confocal microscopy has been used for the first time to examine developing microspores in order to obtain information on ectoapertures that was unavailable using other techniques. Pollen in Duparquetia develops in tetrahedral tetrads as in other eudicots, with the apertures arranged in a modified pattern following Fischer's rule. Pollen grains are asymmetrical and have one equatorial-encircling ectoaperture with two equatorial endoapertures, a unique feature in Leguminosae, and in eudicots. CONCLUSIONS: The pollen morphology of Duparquetia is so unusual that it provides little information to help determine its closest relatives. However, it does fit with a pattern of greater pollen morphological diversity in the first-branching caesalpinioid legume groups than in the more derived clades. The latitudinal ectoaperture of Duparquetia is unique within the Fabales and eudicot clades, resembling more closely the monosulcate pollen found in monocots and basal angiosperms; however, developmental patterns are recognizably similar to those of all other legume pollen types.  相似文献   

8.
9.
Roots of three mangroves, Acanthus ilicifolius, Ceriops tagal and Excoecaria agallocha, collected from forests of the Sundarbans of India were stained with trypan blue to observe arbuscular mycorrhizal colonization. Spores of arbuscular mycorrhizal fungi isolated from rhizospheric soil, collected together with the root samples, also were stained for testing the suitability of the dye as a fluorochrome. Confocal laser scanning microscopy images were constructed. A. ilicifolius and E. agallocha exhibited “Arum” type colonization with highly branched arbuscules, whereas C. tagal showed “Paris” type association with clumped and collapsed arbuscules. We demonstrated that trypan blue is a suitable fluorochrome for staining arbuscular mycorrhizal fungal spores, fungal hyphae, arbuscules and vesicles, which presumably have a considerable amount of surface chitin. It appears that as the integration of chitin into the fungal cell wall changes, its accessibility to trypan blue dye also changes.  相似文献   

10.
Adenocarcinoma cells often form intracellular lumens and intercellular cysts. In order to study the structural relationships between these lumens and the apical domain of normal enterocytes, we have applied electron microscopy and confocal microscopy to a cloned cell line derived from the human colon adenocarcinoma cell line LoVo which express a high number of intracellular lumens and intercellular cysts. Microvilli reminiscent of those detected in the brush border of small intestinal cells are formed in the two types of compartments. By immunofluorescence, we found that a 135 kDa membrane glycoprotein characterized by a monoclonal Ab and normally associated with the brush-border of enterocytes is expressed at the surface of the intracellular lumens and intercellular cysts present in the adenocarcinoma cells. Comparison of fluorescence and reflection contrast micrographs obtained by confocal microscopy demonstrate the presence of spherical intracellular lumens in the juxtanuclear region of single cells, and of more complex shaped intercellular cysts located within clusters of cells. The later cells form junctional complexes limiting an apical plasma membrane domain in contact with the intercellular cyst. It is suggested that the intracellular lumens may represent the abortive form of an apical plasma membrane due to the lack of components required to establish epithelial cell contacts. As opposed to conventional fluorescence microscopy, confocal microscopy allows rapid inspection of the tridimensional organization of intracellular lumens and intercellular cysts even when they are located in cell multilayers.  相似文献   

11.
The eukaryotic cell relies on complex, highly regulated, and functionally distinct membrane bound compartments that preserve a biochemical polarity necessary for proper cellular function. Understanding how the enzymes, proteins, and cytoskeletal components govern and maintain this biochemical segregation is therefore of paramount importance. The use of fluorescently tagged molecules to localize to and/or perturb subcellular compartments has yielded a wealth of knowledge and advanced our understanding of cellular regulation. Imaging techniques such as fluorescent and confocal microscopy make ascertaining the position of a fluorescently tagged small molecule relatively straightforward, however the resolution of very small structures is limited. On the other hand, electron microscopy has revealed details of subcellular morphology at very high resolution, but its static nature makes it difficult to measure highly dynamic processes with precision. Thus, the combination of light microscopy with electron microscopy of the same sample, termed Correlative Light and Electron Microscopy (CLEM), affords the dual advantages of ultrafast fluorescent imaging with the high-resolution of electron microscopy. This powerful technique has been implemented to study many aspects of cell biology. Since its inception, this procedure has increased our ability to distinguish subcellular architectures and morphologies at high resolution. Here, we present a streamlined method for performing rapid microinjection followed by CLEM (Fig. 1). The microinjection CLEM procedure can be used to introduce specific quantities of small molecules and/or proteins directly into the eukaryotic cell cytoplasm and study the effects from millimeter to multi-nanometer resolution (Fig. 2). The technique is based on microinjecting cells grown on laser etched glass gridded coverslips affixed to the bottom of live cell dishes and imaging with both confocal fluorescent and electron microscopy. Localization of the cell(s) of interest is facilitated by the grid pattern, which is easily transferred, along with the cells of interest, to the Epon resin used for immobilization of samples and sectioning prior to electron microscopy analysis (Fig. 3). Overlay of fluorescent and EM images allows the user to determine the subcellular localization as well as any morphological and/or ultrastructural changes induced by the microinjected molecule of interest (Fig. 4). This technique is amenable to time points ranging from ≤5 s up to several hours, depending on the nature of the microinjected sample.  相似文献   

12.
Legume lectins are the most thoroughly studied group of lectins and have been widely linked to many pathological processes. Their use as immunohistochemistry markers for cell profiling and cancer diagnosis have made these molecules important tools for immunological studies and have stimulated the prospection and characterization of new lectins. The crystal structures of a recombinant seed lectin from Vatairea macrocarpa (rVML) and its complexes with GalNAcα1-O-Ser, GalNAc and α-lactose, have been determined at 1.90, 1.97, 2.70 and 1.83 Å resolution, respectively. Small angle X-ray scattering and calorimetry assays have confirmed the same pH stable oligomerization pattern and binding profiles proposed for its wild-type counterpart. In silico analyzes have explored the potential of this recombinant lectin as new tool for cancer research through a comparative profile with other legume lectins widely used for cancer diagnosis and prognosis. The results suggest the recognition of specific epitopes exhibited on different cancer cells as a process that relies on the disposition of hydrophobic clusters and charged regions around the lectin carbohydrate-binding site, favouring the anchorage of different groups in the antigen boundaries, highlighting the different potential of each analyzed lectin. In conclusion, the experimental results and comparative analysis show that rVML is as a promising tool for cancer research, able to bind with high affinity specific tumor-associated antigens, highly stable and easily produced.  相似文献   

13.
Cryo-correlative light and electron microscopy (cryo-CLEM) offers a unique way to analyze the high-resolution structural information of cryo-vitrified specimen by cryo-electron microscopy (cryo-EM) with the guide of the search for unique events by cryo-fluorescence microscopy (cryo-FM). To achieve cryo-FM, a trade-off must be made between the temperature and performance of objective lens. The temperature of specimen should be kept below devitrification while the distance between the objective lens and specimen should be short enough for high resolution imaging. Although special objective lens was designed in many current cryo-FM approaches, the unavoided frosting and ice contamination are still affecting the efficiency of cryo-CLEM. In addition, the correlation accuracy between cryo-FM and cryo-EM would be reduced during the current specimen transfer procedure. Here, we report an improved cryo-CLEM technique (high-vacuum optical platform for cryo-CLEM, HOPE) based on a high-vacuum optical stage and a commercial cryo-EM holder. The HOPE stage comprises of a special adapter to suit the cryo-EM holder and a high-vacuum chamber with an anti-contamination system. It provides a clean and enduring environment for cryo specimen, while the normal dry objective lens in room temperature can be used via the optical windows. The ‘touch-free’ specimen transfer via cryo-EM holder allows least specimen deformation and thus maximizes the correlation accuracy between cryo-FM and cryo-EM. Besides, we developed a software to perform semi-automatic cryo-EM acquisition of the target region localized by cryo-FM. Our work provides a new solution for cryo-CLEM and can be adapted for different commercial fluorescence microscope and electron microscope.  相似文献   

14.
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one‐third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA‐I, PHA‐E, PHA‐L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest.  相似文献   

15.
Abstract

Images and videos of organisms recorded in the wild have relevance for biodiversity studies. With the advent of smartphones and their potential integration with microscopy, scientific documentation and recording of organisms has surged to an unprecedented scale. Here we report a novel method, developed by integration of a portable smartphone with a handheld field microscope that we term Smartphone-integrated Field Microscopy (SPFM), to capture images and videos which can be highly useful in field-based biodiversity studies. We firstly describe the design of the method and equipment used, followed by successful field demonstration of the method using a case study of the gymnosperm Ephedra intermedia Schrenk & C. A. Meyer in the Kashmir Himalaya. We then discuss the novelty of our method and its potential applications in biodiversity studies.  相似文献   

16.
The monogonont rotifer Bryceella stylata was investigated with light, electron and confocal laser scanning (CLSM) microscopy to provide detailed insights into its anatomy and new information for future phylogenetic analyses of the group. Results from CLSM and phalloidin staining revealed a total of six paired longitudinal muscles (musculi longitudinales I-VI) and eight circular muscles (musculi circulares I-VIII) as well a complex network of mostly fine visceral muscles. In comparison with other rotifer species that have been investigated so far, B. stylata shares the presence of the circular and longitudinal muscles: musculus longitudinalis ventralis, musculus longitudinalis lateralis inferior, musculus longitudinalis dorsalis, musculus longitudinalis capitis and musculus circumpedalis. However, the species lacks lateral and dorsolateral longitudinal muscles and some circular muscles (e.g., corona sphincter, musculus pars coronalis). With light and electron microscopy, we were able to document the precise number of pseudosegments and the arrangement of the chambers comprising the trophi elements. Furthermore, our observations revealed several new morphological characteristics, including a shield-like epidermal projection covering the dorsal antenna, an epidermal projection restricting the corona caudally and an unpaired hypopharynx with distinct shovel-like structures.  相似文献   

17.
Microarrays have been the primary means for large-scale analyses of genes implicated in cancer progression. However, more recently a need has been recognized for investigating cancer development directly at the protein level. In this report, we have applied a comparative proteomic technique to the study of metastatic prostate cancer. This technology, termed stable isotope labeling with amino acids in cell culture (SILAC), has recently gained popularity for its ability to compare the expression levels of hundreds of proteins in a single experiment. SILAC makes use of (12)C- and (13)C-labeled amino acids added to the growth media of separately cultured cell lines, giving rise to cells containing either "light" or "heavy" proteins, respectively. Upon mixing lysates collected from these cells, proteins can be identified by tandem mass spectrometry. The incorporation of stable isotopes also allows for a quantitative comparison between the two samples. Using this method, we compared the expression levels for more than 440 proteins in the microsomal fractions of prostate cancer cells with varying metastatic potential. Of these, 60 were found elevated greater than 3-fold in the highly metastatic cells, whereas 22 were reduced by equivalent amounts. Western blotting provided further confirmation of the mass spectrometry-based quantification. Our results demonstrate the applicability of this novel approach toward the study of cancer progression using defined cell lines.  相似文献   

18.
Quantitative ion microscopy of freeze-fractured, freeze-dried cultured cells is a technique for single cell and subcellular elemental analysis. This review describes the technique and its usefulness in determining the uptake and subcellular distribution of the boron from boron neutron capture therapy drugs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号