首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bacillus subtilis AddAB enzyme possesses ATP-dependent helicase and nuclease activities, which result in the unwinding and degradation of double-stranded DNA (dsDNA) upon translocation. Similar to its functional counterpart, the Escherichia coli RecBCD enzyme, it also recognizes and responds to a specific DNA sequence, referred to as Chi (chi). Recognition of chi triggers attenuation of the 3'- to 5'-nuclease, which permits the generation of recombinogenic 3'-overhanging, single-stranded DNA (ssDNA), terminating at chi. Although the RecBCD enzyme briefly pauses at chi, no specific binding of RecBCD to chi during translocation has been documented. Here, we show that the AddAB enzyme transiently binds to its cognate chi sequence (chi(Bs): 5'-AGCGG-3') during translocation. The binding of AddAB enzyme to the 3'-end of the chi(Bs)-specific ssDNA results in protection from degradation by exonuclease I. This protection is gradually reduced with time and lost upon phenol extraction, showing that the binding is non-covalent. Addition of AddAB enzyme to processed, chi(Bs)-specific ssDNA that had been stripped of all protein does not restore nuclease protection, indicating that AddAB enzyme binds to chi(Bs) with high affinity only during translocation. Finally, protection of chi(Bs)-specific ssDNA is still observed when translocation occurs in the presence of competitor chi(Bs)-carrying ssDNA, showing that binding occurs in cis. We suggest that this transient binding of AddAB to chi(Bs) is an integral part of the AddAB-chi(Bs) interaction and propose that this molecular event underlies a general mechanism for regulating the biochemical activities and biological functions of RecBCD-like enzymes.  相似文献   

2.
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease. Here, we report the crystal structure of AddAB bound to DNA. The structure allows identification of a putative Chi-recognition site in an inactivated helicase domain of the AddB subunit. By generating mutant protein complexes that do not respond to Chi, we show that residues responsible for Chi recognition are located in positions equivalent to the signature motifs of a conventional helicase. Comparison with the related RecBCD complex, which recognizes a different Chi sequence, provides further insight into the structural basis for sequence-specific ssDNA recognition. The structure suggests a simple mechanism for DNA break processing, explains how AddAB and RecBCD can accomplish the same overall reaction with different sets of functional modules and reveals details of the role of an Fe-S cluster in protein stability and DNA binding.  相似文献   

3.
The AddAB enzyme is important to homologous DNA recombination in Bacillus subtilis, where it is thought to be the functional counterpart of the RecBCD enzyme of Escherichia coli. In vivo, AddAB responds to a specific five-nucleotide sequence (5'-AGCGG-3' or its complement) in a manner analogous to the response of the RecBCD enzyme to interaction with chi sequences. Here, we show that purified AddAB enzyme is able to load at a double-stranded DNA end and is both a DNA helicase and nuclease, whose combined action results in the degradation of both strands of the DNA duplex. During translocation, recognition of the properly oriented sequence 5'-AGCGG-3' causes attenuation of the AddAB enzyme nuclease activity that is responsible for degradation of the strand 3'-terminal at the entry site. Therefore, we conclude that 5'-AGCGG-3' is the B. subtilis Chi site and it is hereafter referred to as chi(Bs). After encountering chi(Bs), both the degradation of the 5'-terminal strand and the helicase activity persist. Thus, processing of a double-stranded DNA end by the AddAB enzyme produces a duplex DNA molecule with a protruding 3'-terminated single-stranded tail, a universal intermediate of the recombination process.  相似文献   

4.
In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition.  相似文献   

5.
RecBCD is an ATP-dependent helicase and exonuclease which generates 3′ single-stranded DNA (ssDNA) ends used by RecA for homologous recombination. The exonuclease activity is altered when RecBCD encounters a Chi sequence (5′-GCTGGTGG-3′) in double-stranded DNA (ds DNA), an event critical to the generation of the 3′-ssDNA. This study tests the effect of ssDNA oligonucleotides having a Chi sequence (Chi+) or a single base change that abolishes the Chi sequence (Chio), on the enzymatic activities of RecBCD. Our results show that a 14 and a 20mer with Chi+ in the center of the molecule inhibit the exonuclease and helicase activities of RecBCD to a greater extent than the corresponding Chio oligonucleotides. Oligonucleotides with the Chi sequence at one end, or the Chi sequence alone in an 8mer, failed to show Chi-specific inhibition of RecBCD. Thus, Chi recognition requires that Chi be flanked by DNA at either end. Further experiments indicated that the oligonucleotides inhibit RecBCD from binding to its dsDNA substrate. These results suggest that a specific site for Chi recognition exists on RecBCD, which binds Chi with greater affinity than a non-Chi sequence and is probably adjacent to non-specific DNA binding sites.  相似文献   

6.
AddAB is a helicase-nuclease that processes double-stranded DNA breaks for repair by homologous recombination. This process is modulated by Chi recombination hotspots: specific DNA sequences that attenuate the nuclease activity of the translocating AddAB complex to promote downstream recombination. Using a combination of kinetic and imaging techniques, we show that AddAB translocation is not coupled to DNA unwinding in the absence of single-stranded DNA binding proteins because nascent single-stranded DNA immediately re-anneals behind the moving enzyme. However, recognition of recombination hotspot sequences during translocation activates unwinding by coupling these activities, thereby ensuring the downstream formation of single-stranded DNA that is required for RecA-mediated recombinational repair. In addition to their implications for the mechanism of double-stranded DNA break repair, these observations may affect our implementation and interpretation of helicase assays and our understanding of helicase mechanisms in general.  相似文献   

7.
RecBCD and AddAB are bacterial enzymes that share similar helicase and nuclease activities and initiate repair of DNA double-strand breaks by homologous recombination. Examination of the phylogenetic distribution of AddAB and RecBCD revealed that one or the other complex is present in most sequenced bacteria. In addition, horizontal gene transfer (HGT) events involving addAB and recBCD appear to be common, with the genes encoding one complex frequently replacing those encoding the other. HGT may also explain the unexpected identification of archaeal addAB genes. More than 85% of addAB and recBCD genes are clustered on the genome, suggesting operon structures. A few organisms, including the Mycobacteria, encode multiple copies of these complexes of either the same or mixed classes. The possibility that the enzymatic activities of the AddAB and RecBCD enzymes promote their horizontal transfer is discussed, and the distribution of AddAB/RecBCD is compared to that of the RecU/RuvC resolvases. Finally, it appears that two sequence motifs, the Walker A box involved in ATP binding and an iron-sulfur-cysteine cluster, are present only in subsets of AddB proteins, suggesting the existence of mechanistically distinct classes of AddB.Homologous recombination is central to the repair of DNA damaged by single-strand (SS) and double-strand (DS) breaks and gaps. Such discontinuities can occur after exposure to exogenous agents such as ionizing radiation but also when DNA replication forks break and as intermediates in DNA repair processes. Homologous recombination can also rearrange genetic information, making it important in processes such as phase variation of bacterial outer membrane proteins (for an example, see reference 2).Homologous recombination is highly conserved among viruses, bacteria, archaea, and eukaryotes. There are three recognizable stages (for reviews, see references 25 and 35). In the first stage, presynapsis, the DNA substrate is processed to give a SS region coated with strand exchange protein(s). In bacteria, this protein is RecA. In the second stage, synapsis, the protein-DNA complex pairs with its complementary homologous DNA target, displacing the other strand at the target site and forming a joint molecule. In the final stage, postsynapsis, DNA replication fills in any gaps in the joint molecule, which is then resolved to give recombinant DNA products.In bacteria, there appear to be two different presynaptic pathways that use either the related AddAB or RecBCD holoenzymes (Fig. (Fig.1)1) or, alternatively, the RecFOR proteins. RecFOR proteins appear to operate on SS gaps to ensure RecA is loaded there, whereas RecBCD and AddAB act on DNA DS breaks (DSBs), processing them to yield SS 3′ DNA ends coated with RecA (3, 43).Open in a separate windowFIG. 1.Structure of the RecBCD and AddAB proteins. The RecB, RecD, and AddA proteins include a helicase domain (solid green) with the canonical six-helicase motifs of helicase superfamily I. The most N-terminal of these motifs is the Walker A box (orange). The RecC and AddB proteins include an inactivated helicase domain (striped green). The RecB, AddA, and AddB proteins additionally possess similar short nuclease domains toward their C termini (red). Some, but not all, AddB proteins possess an N-terminal Walker A and/or a mostly C-terminal iron-sulfur motif made up of four cysteines (blue).The RecBCD complex has most thoroughly been studied in Escherichia coli, a member of the Gamma class of the phylum Proteobacteria. RecB and RecD are superfamily I helicases, and RecB is also a nuclease. After the RecBCD complex loads onto a DS DNA end, the RecB and RecD helicases separate the strands, with the slower RecB helicase traveling on one strand in the 3′-to-5′ direction and the faster RecD helicase traveling on the other strand from 5′ to 3′ (38). During translocation, E. coli RecBCD recognizes a specific DNA sequence, Chi (5′-GCTGGTGG-3′), perhaps via the RecC protein, which appears to be an inactivated helicase (Fig. (Fig.1)1) (32, 34). Chi is a recombination hot spot that switches the complex to a recombinogenic mode, producing a 3′ SS end at the Chi site via the nuclease activity of RecB (for reviews, see references 25 and 35). In addition to producing a 3′ SS “tail” needed for recombination, the RecBCD complex actively loads the RecA strand exchange protein onto this DNA (5). In E. coli, the RecBCD complex is responsible for essentially all recombinational repair of DSBs.Bacillus subtilis and some other bacteria lack RecBCD but possess a different complex with many of the same activities. This complex is composed of the AddA and AddB proteins (22). Like RecB, AddA is a superfamily I helicase and a nuclease (18, 21), organized with the same domain structure as RecB (Fig. (Fig.1).1). Similar to RecC, AddB appears to be an inactivated helicase, but it also possesses a nuclease domain similar to those of RecB and AddA (Fig. (Fig.1)1) (2, 11, 43). Like RecBCD, AddAB is an ATP-dependent helicase that acts as a nuclease in conjunction with its helicase activity, with the AddA nuclease acting on the 3′-end strand and the AddB nuclease on the 5′-end strand (43). Also like RecBCD, AddAB recognizes Chi-like control sequences, for instance, 5′-GCGCGTG-3′ in Lactococcus lactis and 5′-AGCGG-3′ in B. subtilis (7, 12). The AddAB complex is required for recombinational repair of DSBs (1, 2, 44), but it is not known if, like RecBCD, it actively loads RecA.Both RecBCD and AddAB are important for bacterial pathogenicity. addAB mutations reduce the ability of Helicobacter pylori to colonize mouse stomachs, and recBC mutants of Salmonella enterica serovar Typhimurium are severely compromised for infection and killing (2, 8).Using a strict set of criteria, Rocha et al. (30) examined the distribution across bacteria of the RecBCD and AddAB enzymes, along with other recombination and DNA repair proteins. They determined that the AddAB proteins are ubiquitous in some taxa and the RecBCD proteins in others, while yet other taxa have examples of both complexes in different species. In addition, they classified several species as lacking both the AddAB and RecBCD complexes. Recently, addAB genes from Epsilonproteobacteria were identified (2, 27, 40). Previously, all examined members of this proteobacterial class had been classified by Rocha et al. as lacking every component of the RecBCD and AddAB systems. This finding suggests that the stringent criteria used by Rocha et al. (30) might have led them to miss other examples of AddAB and RecBCD from sequenced bacteria. On this basis, and to gain a fuller understanding of the importance of the AddAB and RecBCD enzymes, their phylogenetic distribution was reexamined.  相似文献   

8.
The AddAB helicase and nuclease complex is used for repairing double-strand DNA breaks in the many bacteria that do not possess RecBCD. Here, we show that AddAB, from the Gram-negative opportunistic pathogen Bacteroides fragilis, can rescue the ultraviolet sensitivity of an Escherichia coli recBCD mutant and that addAB is required for survival of B. fragilis following DNA damage. Using single-molecule observations we demonstrate that AddAB can translocate along DNA at up to 250 bp per second and can unwind an average of 14 000 bp, with some complexes capable of unwinding 40 000 bp. These results demonstrate the importance of processivity for facilitating encounters with recognition sequences that modify enzyme function during homologous recombination.  相似文献   

9.
The equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends containing varying lengths of polyethylene glycol (PEG) spacers within pre-formed 3'-single-stranded (ss) DNA ((dT)n) tails was studied. These studies were designed to test a previous proposal that the 3'-(dT)n tail can be looped out upon binding RecBC and RecBCD for 3'-ssDNA tails with n>or=6 nucleotides. Equilibrium binding of protein to unlabeled DNA substrates with ends containing PEG-substituted 3'-ssDNA tails was examined by competition with a Cy3-labeled reference DNA which undergoes a Cy3 fluorescence enhancement upon protein binding. We find that the binding affinities of both RecBC and RecBCD for a DNA end are unaffected upon substituting PEG for the ssDNA between the sixth and the final two nucleotides of the 3'-(dT)n tail. However, placing PEG at the end of the 3'-(dT)n tail increases the binding affinities to their maximum values (i.e. the same as binding constants for RecBC or RecBCD to a DNA end with only a 3'-(dT)6 tail). Equilibrium binding studies of a RecBC mutant containing a nuclease domain deletion, RecB(Deltanuc)C, suggest that looping of the 3'-tail (when n>or=6 nucleotides) occurs even in the absence of the RecB nuclease domain, although the nuclease domain stabilizes such loop formation. Computer modeling of the RecBCD-DNA complexes suggests that the loop in the 3'-ssDNA tail may form at the RecB/RecC interface. Based on these results we suggest a model for how a loop in the 3'-ssDNA tail might form upon encounter of a "Chi" recognition sequence during unwinding of DNA by the RecBCD helicase.  相似文献   

10.
Homologous recombination occurs especially frequently near special chromosomal sites called hotspots. In Escherichia coli, Chi hotspots control RecBCD enzyme, a protein machine essential for the major pathway of DNA break-repair and recombination. RecBCD generates recombinogenic single-stranded DNA ends by unwinding DNA and cutting it a few nucleotides to the 3′ side of 5′ GCTGGTGG 3′, the sequence historically equated with Chi. To test if sequence context affects Chi activity, we deep-sequenced the products of a DNA library containing 10 random base-pairs on each side of the Chi sequence and cut by purified RecBCD. We found strongly enhanced cutting at Chi with certain preferred sequences, such as A or G at nucleotides 4–7, on the 3′ flank of the Chi octamer. These sequences also strongly increased Chi hotspot activity in E. coli cells. Our combined enzymatic and genetic results redefine the Chi hotspot sequence, implicate the nuclease domain in Chi recognition, indicate that nicking of one strand at Chi is RecBCD''s biologically important reaction in living cells, and enable more precise analysis of Chi''s role in recombination and genome evolution.  相似文献   

11.
The octameric Chi (χ) sequence is a recombination hotspot in Escherichia coli. Recent studies suggest a singular mechanism by which χ regulates not only the nuclease activity of RecBCD enzyme, but also the ability of RecBCD to promote loading of the strand exchange protein, RecA, onto χ-containing DNA.  相似文献   

12.
Double-stranded DNA breaks are prepared for recombinational repair by nucleolytic digestion to form single-stranded DNA overhangs that are substrates for RecA/Rad51-mediated strand exchange. This processing can be achieved through the activities of multiple helicases and nucleases. In bacteria, the function is mainly provided by a stable multi-protein complex of which there are two structural classes; AddAB- and RecBCD-type enzymes. These helicase–nucleases are of special interest with respect to DNA helicase mechanism because they are exceptionally powerful DNA translocation motors, and because they serve as model systems for both single molecule studies and for understanding how DNA helicases can be coupled to other protein machinery. This review discusses recent developments in our understanding of the AddAB and RecBCD complexes, focussing on their distinctive strategies for processing DNA ends. We also discuss the extent to which bacterial DNA end resection mechanisms may parallel those used in eukaryotic cells.  相似文献   

13.
In Escherichia coli, RecBCD processes double-stranded DNA breaks during the initial stages of homologous recombination. RecBCD contains helicase and nuclease activities, and unwinds and digests the blunt-ended DNA until a specific eight-nucleotide sequence, Chi, is encountered. Chi modulates the nuclease activity of RecBCD and results in a resected DNA end, which is a substrate for RecA during subsequent steps in recombination. RecBCD also acts as a defence mechanism against bacteriophage infection by digesting linear viral DNA present during virus replication or resulting from the action of restriction endonucleases. To avoid this fate, bacteriophage lambda encodes the gene Gam whose product is an inhibitor of RecBCD. Gam has been shown to bind to RecBCD and inhibit its helicase and nuclease activities. We show that Gam inhibits RecBCD by preventing it from binding DNA. We have solved the crystal structure of Gam from two different crystal forms. Using the published crystal structure of RecBCD in complex with DNA we suggest models for the molecular mechanism of Gam-mediated inhibition of RecBCD. We also propose that Gam could be a mimetic of single-stranded, and perhaps also double-stranded, DNA.  相似文献   

14.
Homologous recombination in Bacillus subtilis requires the product of the addA and addB genes, the AddAB enzyme. This enzyme, which is both a helicase and a powerful nuclease, is thought to be the counterpart of the Escherichia coli RecBCD enzyme. From this analogy, it is expected that the nuclease activity of AddAB can be downregulated by a specific DNA sequence, which would correspond to the chi site in E. coli . Using protection of linear double-stranded DNA as a criterion, we identified the five-nucleotide sequence 5'-AGCGG-3', or its complement 5'-CCGCT-3', as being sufficient for AddAB nuclease attenuation. We have shown further that this attenuation occurs only if the sequence is properly oriented with respect to the translocating AddAB enzyme. Finally, inspection of the complete B. subtilis genome revealed that this five-nucleotide sequence is over-represented and is, in a majority of cases, co-oriented with DNA replication. Based on these observations, we propose that 5'-AGCGG-3', or its complement, is the B. subtilis analogue of the E. coli chi sequence.  相似文献   

15.
Summary: The repair of DNA double-strand breaks (DSBs) is essential for cell viability and important for homologous genetic recombination. In enteric bacteria such as Escherichia coli, the major pathway of DSB repair requires the RecBCD enzyme, a complex helicase-nuclease regulated by a simple unique DNA sequence called Chi. How Chi regulates RecBCD has been extensively studied by both genetics and biochemistry, and two contrasting mechanisms to generate a recombinogenic single-stranded DNA tail have been proposed: the nicking of one DNA strand at Chi versus the switching of degradation from one strand to the other at Chi. Which of these reactions occurs in cells has remained unproven because of the inability to detect intracellular DNA intermediates in bacterial recombination and DNA break repair. Here, I discuss evidence from a combination of genetics and biochemistry indicating that nicking at Chi is the intracellular (in vivo) reaction. This example illustrates the need for both types of analysis (i.e., molecular biology) to uncover the mechanism and control of complex processes in living cells.  相似文献   

16.
The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.  相似文献   

17.
RecBCD enzyme acts in the major pathway of homologous recombination of linear DNA in Escherichia coli. The enzyme unwinds DNA and is an ATP-dependent double-strand and single-strand exonuclease and a single-strand endonuclease; it acts at Chi recombination hotspots (5'-GCTGGTGG-3') to produce a recombinogenic single-stranded DNA 3'-end. We found that a small RNA with a unique sequence of approximately 24 nt was tightly bound to RecBCD enzyme and co-purified with it. When added to native enzyme this RNA, but not four others, increased DNA unwinding and Chi nicking activities of the enzyme. In seven similarly active enzyme preparations the molar ratio of RNA molecules to RecBCD enzyme molecules ranged from 0.2 to <0.008. These results suggest that, although this unique RNA is not an essential enzyme subunit, it has a biological role in stimulating RecBCD enzyme activity.  相似文献   

18.
Amundsen SK  Smith GR 《Genetics》2007,175(1):41-54
The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination.  相似文献   

19.
E. coli RecBCD, a helicase/nuclease involved in double stranded (ds) DNA break repair, binds to a dsDNA end and melts out several DNA base pairs (bp) using only its binding free energy. We examined RecBCD-DNA initiation complexes using thermodynamic and structural approaches. Measurements of enthalpy changes for RecBCD binding to DNA ends possessing pre-melted ssDNA tails of increasing length suggest that RecBCD interacts with ssDNA as long as 17–18 nucleotides and can melt at least 10–11 bp upon binding a blunt DNA end. Cryo-EM structures of RecBCD alone and in complex with a blunt-ended dsDNA show significant conformational heterogeneities associated with the RecB nuclease domain (RecBNuc) and the RecD subunit. In the absence of DNA, 56% of RecBCD molecules show no density for the RecB nuclease domain, RecBNuc, and all RecBCD molecules show only partial density for RecD. DNA binding reduces these conformational heterogeneities, with 63% of the molecules showing density for both RecD and RecBNuc. This suggests that the RecBNuc domain is dynamic and influenced by DNA binding. The major RecBCD-DNA structural class in which RecBNuc is docked onto RecC shows melting of at least 11 bp from a blunt DNA end, much larger than previously observed. A second structural class in which RecBNuc is not docked shows only four bp melted suggesting that RecBCD complexes transition between states with different extents of DNA melting and that the extent of melting regulates initiation of helicase activity.  相似文献   

20.
Escherichia coli RecBCD helicase unwinds blunt-end duplex DNA to repair damaged DNA molecules in the homologous recombination pathway. Previous single-molecule experiments showed that RecBCD recognizes an 8 nt DNA sequence, χ, and lowers its unwinding rate afterward under saturating ATP condition. We have developed a single-molecule force-tethered particle motion (FTPM) method, which is modified from the conventional TPM method, and applied it to study RecBCD motion in detail. In the FTPM experiment, a stretching force is applied to the DNA-bead complex that suppresses the bead's Brownian motion, resulting in an improved spatial resolution at long DNA substrates. Based on the equipartition theorem, the mean-square displacement of the bead's Brownian motion measured by FTPM correlates linearly to DNA extension length with a predicted slope, circumventing the difficulties of conventional TPM experiments, such as nonlinearity and low resolution of long DNA substrates. The FTPM method offers the best resolution in the presence of only a small stretching force (0.20 pN). We used the FTPM method to investigate RecBCD helicase motion along 4.1 kb long χ-containing duplex DNA molecules, and observed that the translocation rate of RecBCD changes after the χ sequence under limited ATP concentrations. This suggests that χ recognition by RecBCD does not require saturating ATP conditions, contrary to what was previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号