首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The retrograde rotation of wagon wheels in Western movies is a digital illusion of continuous motion. But vision itself is not continuous and it's not clear that the “stream” of consciousness that perceives it is continuous either.  相似文献   

5.
6.
7.
8.
9.
Seeing Anthropology: Cultural Anthropology through Film (book and video). Karl G. Heider. Boston: Allyn and Bacon, 1997. 347 pp.; 190:58 running time, VHS, color.  相似文献   

10.
Seeing Anthropology: Cultural Anthropology through Film. Karl G. Heider. Boston: Allyn and Bacon, 1997. 347 pp.,. videotapes.  相似文献   

11.
12.
Electroporation has been recently adapted for the transfer of macromolecules into cells of tissues in vivo. Although mature adipocytes constitute <20% of cells residing in adipose tissue, we hypothesized that fat cells might be susceptible to selective electrotransfer of plasmid DNA owing to their large size relative to other cells in the tissue. Results demonstrate the feasibility of electroporating DNA into mature fat cells with >99% selectivity over other cells in the tissue. Further experiments used the "adiporation" technique to image the subcellular targeting of fluorescent bioreporter molecules to the nucleus, mitochondria, and lipid droplets of adipocytes within intact adipose tissue. Finally, we utilized fluorescent bioreporters to examine the effects of constitutive activation of the beta-adrenergic signaling pathway in adipocytes. These results demonstrate that overexpression of rat beta1-adrenergic receptors alters the cellular morphology of white adipocytes in a fashion that mimics the effects of systemic infusion of beta3-adrenergic receptor agonists. Hallmarks of the altered morphology include pronounced fragmentation of the single lipid droplet, repositioning of the nucleus, and induction of mitochondrial biogenesis. These results indicate that activation of beta-adrenergic signaling within adipocytes is sufficient to induce a phenotype that resembles typical brown adipocytes and suggest that in vivo electroporation will allow molecular dissection of the mechanisms involved.  相似文献   

13.
The field of tissue engineering aims to produce living, biological constructs which possess the appropriate spatial ordering of cells and their extra cellular matrix products. The complexity of a single cell and its interactions in a large collective have made development of useful models to assist in tissue culture difficult, and consequentially most tissue culture endeavors are limited to trial and error approaches. Some cell types display a natural tendency to spontaneously self-assemble into large domains of parallel-oriented cells. In this work, we show that these cell culture systems can be studied in the context of continuous disorder-order phase transformations. We suggest that collective ordering of the cells is controlled by the amount of noise in the walk of the individual cells (directional persistence) because undifferentiated mesenchymal stem cells display a seven-times higher directional persistence than mature fibroblasts and have a 24-times larger final-oriented domain size, an observation that corresponds with collective ordering in self-propelled particle systems. The study of cell culture systems using analogies derived from statistical mechanics yields simple, practical models offering insight into how a long-range order can be obtained in tissue-engineered constructs, providing a new paradigm for managing operations with large collectives of living cells.  相似文献   

14.
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.  相似文献   

15.
Most studies of plant–animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human‐driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant–animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.  相似文献   

16.
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.  相似文献   

17.
18.
19.
20.
Using hybridization reactions with a cDNA copy, the complexity of polysomal polyadenylated mRNA from the day-old chick lens was found to correspond to 5800–7200 sequences of average size, arranged in three abundance classes. Experiments with heterologous cDNAs suggest on a qualitative basis that many of the sequences expressed in 8-day embryonic neural retina and pigmented epithelium mRNAs are also present in lens mRNA. A cDNA fraction complementary to the most abundant lens mRNAs, representing an approximate minimum of four sequences, was used to assay the dosage of putative crystallin sequences in these and other embryonic tissues. Neural retina and pigmented epithelium cytoplasmic mRNAs have low concentrations of these sequences, which appear to be absent from mRNA prepared from headless bodies and muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号